Spaces:
Runtime error
Runtime error
File size: 8,624 Bytes
1f4f7c2 281f2f2 d6553a2 1f4f7c2 691de0c 1f4f7c2 281f2f2 1f4f7c2 d6553a2 1f4f7c2 d6553a2 1f4f7c2 39c6017 1f4f7c2 e7f4f29 d6553a2 39c6017 d6553a2 1f4f7c2 d6553a2 14e8dbc d6553a2 14e8dbc d6553a2 369f6d3 d6553a2 1f4f7c2 d6553a2 1f4f7c2 691de0c 1f4f7c2 d6553a2 1f4f7c2 d6553a2 1f4f7c2 d6553a2 1f4f7c2 d6553a2 281f2f2 1f4f7c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, sizes, fonts
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "ussipan/SipanGPT-0.2-Llama-3.2-1B-GGUF"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
# Main Gradio inference function
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = [{k: v for k, v in d.items() if k != 'metadata'} for d in chat_history]
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Se recortó la entrada de la conversación porque era más larga que {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
conversation.append({"role": "assistant", "content": ""})
outputs = []
for text in streamer:
outputs.append(text)
bot_response = "".join(outputs)
conversation[-1]['content'] = bot_response
yield "", conversation
# Implementing Gradio 5 features and building a ChatInterface UI yourself
PLACEHOLDER = """<div style="padding: 20px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://corladlalibertad.org.pe/wp-content/uploads/2024/01/USS.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; margin-bottom: 10px;">
<h1 style="font-size: 28px; margin: 0;">SipánGPT 0.2 Llama 3.2</h1>
<p style="font-size: 8px; margin: 5px 0 0; opacity: 0.65;">
<a href="https://huggingface.co/spaces/ysharma/Llama3-2_with_Gradio-5" target="_blank" style="color: inherit; text-decoration: none;">Forked from @ysharma</a>
</p>
<p style="font-size: 12px; margin: 5px 0 0; opacity: 0.9;">Este modelo es experimental, puede generar alucinaciones o respuestas incorrectas.</p>
<p style="font-size: 12px; margin: 5px 0 0; opacity: 0.9;">Entrenado con un dataset de 5.4k conversaciones.</p>
<p style="font-size: 12px; margin: 5px 0 0; opacity: 0.9;">
<a href="https://huggingface.co/datasets/ussipan/sipangpt" target="_blank" style="color: inherit; text-decoration: none;">Ver el dataset aquí</a>
</p>
</div>"""
def handle_retry(history, retry_data: gr.RetryData):
new_history = history[:retry_data.index]
previous_prompt = history[retry_data.index]['content']
yield from generate(previous_prompt, chat_history = new_history, max_new_tokens = 1024, temperature = 0.6, top_p = 0.9, top_k = 50, repetition_penalty = 1.2)
def handle_like(data: gr.LikeData):
if data.liked:
print("Votaste positivamente esta respuesta: ", data.value)
else:
print("Votaste negativamente esta respuesta: ", data.value)
def handle_undo(history, undo_data: gr.UndoData):
chatbot = history[:undo_data.index]
prompt = history[undo_data.index]['content']
return chatbot, prompt
def chat_examples_fill(data: gr.SelectData):
yield from generate(data.value['text'], chat_history = [], max_new_tokens = 1024, temperature = 0.6, top_p = 0.9, top_k = 50, repetition_penalty = 1.2)
class SipanGPTTheme(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.Color(
name="custom_green",
c50="#f0fde4",
c100="#e1fbc8",
c200="#c3f789",
c300="#a5f34a",
c400="#7dfa00", # primary color
c500="#5ef000",
c600="#4cc700",
c700="#39a000",
c800="#2b7900",
c900="#1d5200",
c950="#102e00",
),
secondary_hue: colors.Color | str = colors.Color(
name="custom_secondary_green",
c50="#edfce0",
c100="#dbf9c1",
c200="#b7f583",
c300="#93f145",
c400="#5fed00", # secondary color
c500="#4ed400",
c600="#3fad00",
c700="#308700",
c800="#236100",
c900="#153b00",
c950="#0a1f00",
),
neutral_hue: colors.Color | str = colors.gray,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_md,
font: fonts.Font | str | list[fonts.Font | str] = (
fonts.GoogleFont("Exo 2"),
"ui-sans-serif",
"system-ui",
"sans-serif",
),
font_mono: fonts.Font | str | list[fonts.Font | str] = (
fonts.GoogleFont("Fraunces"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
self.set(
body_background_fill="#333333",
body_background_fill_dark="#333333",
body_text_color="#ffffff",
body_text_color_dark="#ffffff",
color_accent_soft="*secondary_200",
button_primary_background_fill="*primary_400",
button_primary_background_fill_hover="*primary_500",
button_primary_text_color="#333333",
button_primary_text_color_dark="#333333",
block_title_text_color="*primary_400",
block_title_text_color_dark="*primary_400",
input_background_fill="#444444",
input_background_fill_dark="#444444",
input_border_color="#555555",
input_border_color_dark="#555555",
input_placeholder_color="#888888",
input_placeholder_color_dark="#888888",
)
# Uso del tema
theme = SipanGPTTheme()
with gr.Blocks(theme=theme, fill_height=True) as demo:
with gr.Column(elem_id="container", scale=1):
chatbot = gr.Chatbot(
label="SipánGPT 0.2 Llama 3.2",
show_label=False,
type="messages",
scale=1,
suggestions = [
{"text": "Háblame del reglamento de estudiantes de la universidad"},
{"text": "Qué becas ofrece la universidad"},
],
placeholder = PLACEHOLDER,
)
msg = gr.Textbox(submit_btn=True, show_label=False)
with gr.Accordion('Additional inputs', open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, )
temperature = gr.Slider(label="Temperature",minimum=0.1, maximum=4.0, step=0.1, value=0.6,)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, )
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50, )
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, )
msg.submit(generate, [msg, chatbot, max_new_tokens, temperature, top_p, top_k, repetition_penalty], [msg, chatbot])
chatbot.retry(handle_retry, chatbot, [msg, chatbot])
chatbot.like(handle_like, None, None)
chatbot.undo(handle_undo, chatbot, [chatbot, msg])
chatbot.suggestion_select(chat_examples_fill, None, [msg, chatbot] )
demo.launch() |