import os from threading import Thread from typing import Iterator import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_id = "ussipan/SipanGPT-0.2-Llama-3.2-1B-GGUF" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, ) model.eval() # Main Gradio inference function def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [{k: v for k, v in d.items() if k != 'metadata'} for d in chat_history] conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Se recortó la entrada de la conversación porque era más larga que {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() conversation.append({"role": "assistant", "content": ""}) outputs = [] for text in streamer: outputs.append(text) bot_response = "".join(outputs) conversation[-1]['content'] = bot_response yield "", conversation # Custom CSS to match your color scheme and fonts custom_css = """ body { background-color: #333333; color: #f0f0f0; font-family: 'Exo 2', system-ui, sans-serif; } .gradio-container { background-color: #333333; } .gr-button { background-color: #7dfa00 !important; color: #333333 !important; border: none !important; } .gr-button:hover { background-color: #5fed00 !important; } .gr-input, .gr-textarea { background-color: #444444 !important; border-color: #7dfa00 !important; color: #f0f0f0 !important; } .gr-form { background-color: #444444 !important; border-color: #7dfa00 !important; } .gr-box { background-color: #444444 !important; border-color: #7dfa00 !important; } .gr-padded { background-color: #444444 !important; } h1, h2, h3 { font-family: 'Fraunces', system-ui, serif; color: #7dfa00; } """ # Updated placeholder HTML PLACEHOLDER = """

SipánGPT 0.2 Llama 3.2

Forked from @ysharma

Este modelo es experimental, puede generar alucinaciones o respuestas incorrectas.

Ver el dataset aquí

Entrenado con un dataset de 5.4k conversaciones.

""" def handle_retry(history, retry_data: gr.RetryData): new_history = history[:retry_data.index] previous_prompt = history[retry_data.index]['content'] yield from generate(previous_prompt, chat_history = new_history, max_new_tokens = 1024, temperature = 0.6, top_p = 0.9, top_k = 50, repetition_penalty = 1.2) def handle_like(data: gr.LikeData): if data.liked: print("Votaste positivamente esta respuesta: ", data.value) else: print("Votaste negativamente esta respuesta: ", data.value) def handle_undo(history, undo_data: gr.UndoData): chatbot = history[:undo_data.index] prompt = history[undo_data.index]['content'] return chatbot, prompt def chat_examples_fill(data: gr.SelectData): yield from generate(data.value['text'], chat_history = [], max_new_tokens = 1024, temperature = 0.6, top_p = 0.9, top_k = 50, repetition_penalty = 1.2) # Create a custom theme custom_theme = gr.themes.Base().set( body_background_fill="#333333", body_background_fill_dark="#333333", body_text_color="#f0f0f0", body_text_color_dark="#f0f0f0", color_primary="#7dfa00", background_fill_primary="#444444", background_fill_secondary="#333333", border_color_primary="#7dfa00", button_primary_background_fill="#7dfa00", button_primary_background_fill_dark="#7dfa00", button_primary_text_color="#333333", button_primary_text_color_dark="#333333", input_background_fill="#444444", input_background_fill_dark="#444444", input_border_color="#7dfa00", input_border_color_dark="#7dfa00", input_placeholder_color="#bebebe", input_placeholder_color_dark="#bebebe", ) with gr.Blocks(theme=custom_theme, css=custom_css) as demo: with gr.Column(elem_id="container", scale=1): chatbot = gr.Chatbot( label="SipánGPT 0.2 Llama 3.2", show_label=False, type="messages", scale=1, suggestions=[ {"text": "Háblame del reglamento de estudiantes de la universidad"}, {"text": "Qué becas ofrece la universidad"}, ], placeholder=PLACEHOLDER, ) msg = gr.Textbox(submit_btn=True, show_label=False) with gr.Accordion('Additional inputs', open=False): max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) msg.submit(generate, [msg, chatbot, max_new_tokens, temperature, top_p, top_k, repetition_penalty], [msg, chatbot]) chatbot.retry(handle_retry, chatbot, [msg, chatbot]) chatbot.like(handle_like, None, None) chatbot.undo(handle_undo, chatbot, [chatbot, msg]) chatbot.suggestion_select(chat_examples_fill, None, [msg, chatbot]) demo.launch()