import os from threading import Thread from typing import Iterator import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_id = "ussipan/SipanGPT-0.2-Llama-3.2-1B-GGUF" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, ) model.eval() # Main Gradio inference function def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [{k: v for k, v in d.items() if k != 'metadata'} for d in chat_history] conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Se recortó la entrada de la conversación porque era más larga que {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() conversation.append({"role": "assistant", "content": ""}) outputs = [] for text in streamer: outputs.append(text) bot_response = "".join(outputs) conversation[-1]['content'] = bot_response yield "", conversation # Custom CSS to match your color scheme and fonts custom_css = """ body { background-color: #333333; color: #f0f0f0; font-family: 'Exo 2', system-ui, sans-serif; } .gradio-container { background-color: #333333; } .gr-button { background-color: #7dfa00 !important; color: #333333 !important; border: none !important; } .gr-button:hover { background-color: #5fed00 !important; } .gr-input, .gr-textarea { background-color: #444444 !important; border-color: #7dfa00 !important; color: #f0f0f0 !important; } .gr-form { background-color: #444444 !important; border-color: #7dfa00 !important; } .gr-box { background-color: #444444 !important; border-color: #7dfa00 !important; } .gr-padded { background-color: #444444 !important; } h1, h2, h3 { font-family: 'Fraunces', system-ui, serif; color: #7dfa00; } """ # Updated placeholder HTML PLACEHOLDER = """
Este modelo es experimental, puede generar alucinaciones o respuestas incorrectas.
Entrenado con un dataset de 5.4k conversaciones.