File size: 15,960 Bytes
0c131af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d351e
0c131af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import time
import sys
import streamlit as st
import string
from io import StringIO 
import pdb
import json
from twc_embeddings import HFModel,SimCSEModel,SGPTModel,CausalLMModel,SGPTQnAModel
from twc_openai_embeddings import OpenAIModel
from twc_clustering import TWCClustering
import torch
import requests
import socket


MAX_INPUT = 10000

SEM_SIMILARITY="1"
DOC_RETRIEVAL="2"
CLUSTERING="3"


use_case = {"1":"Finding similar phrases/sentences","2":"Retrieving semantically matching information to a query. It may not be a factual match","3":"Clustering"}
use_case_url = {"1":"https://huggingface.co/spaces/taskswithcode/semantic_similarity","2":"https://huggingface.co/spaces/taskswithcode/semantic_search","3":""}



from transformers import BertTokenizer, BertForMaskedLM


APP_NAME = "hf/semantic_clustering"
INFO_URL = "https://www.taskswithcode.com/stats/"



        

def get_views(action):
    ret_val = 0
    hostname = socket.gethostname()
    ip_address = socket.gethostbyname(hostname)
    if ("view_count" not in st.session_state):
        try:
           app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
           res = requests.post(INFO_URL, json = app_info).json()
           print(res)
           data = res["count"]
        except:
           data = 0
        ret_val = data
        st.session_state["view_count"] = data
    else:
        ret_val = st.session_state["view_count"]
        if (action != "init"):
           app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
           res = requests.post(INFO_URL, json = app_info).json()
    return "{:,}".format(ret_val)
        



def construct_model_info_for_display(model_names):
    options_arr  = []
    markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/><i>The selected models satisfy one or more of the following (1) state-of-the-art (2) the most downloaded models on Hugging Face (3) Large Language Models (e.g. GPT-3)</i></div>"
    markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
    for node in model_names:
        options_arr .append(node["name"])
        if (node["mark"] == "True"):
            markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\">&nbsp;•&nbsp;Model:&nbsp;<a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Code released by:&nbsp;<a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Model info:&nbsp;<a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>"
            if ("Note" in node):
                markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\">&nbsp;&nbsp;&nbsp;&nbsp;{node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>"
            markdown_str += "<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"><br/></div>"
        
    markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>•&nbsp;Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not cached</div>"
    limit = "{:,}".format(MAX_INPUT)
    markdown_str += f"<div style=\"font-size:12px; color: #9f9f9f; text-align: left\">•&nbsp;User uploaded file has a maximum limit of {limit} sentences.</div>"
    return options_arr,markdown_str


st.set_page_config(page_title='TWC - Compare popular/state-of-the-art models for semantic clustering using sentence embeddings', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
            menu_items={
             'About': 'This app was created by taskswithcode. http://taskswithcode.com'
             
              })
col,pad = st.columns([85,15])

with col:
    st.image("long_form_logo_with_icon.png")


@st.experimental_memo
def load_model(model_name,model_class,load_model_name):
    try:
        ret_model = None
        obj_class = globals()[model_class]
        ret_model = obj_class()
        ret_model.init_model(load_model_name)
        assert(ret_model is not None)
    except Exception as e:
        st.error(f"Unable to load model class:{model_class} model_name: {model_name} load_model_name: {load_model_name}   {str(e)}")
        pass
    return ret_model


  
@st.experimental_memo
def cached_compute_similarity(input_file_name,sentences,_model,model_name,threshold,_cluster,clustering_type):
    texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False)
    results = _cluster.cluster(None,texts,embeddings,threshold,clustering_type)
    return results


def uncached_compute_similarity(input_file_name,sentences,_model,model_name,threshold,cluster,clustering_type):
    with st.spinner('Computing vectors for sentences'):
        texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False)
        results = cluster.cluster(None,texts,embeddings,threshold,clustering_type)
    #st.success("Similarity computation complete")
    return results

DEFAULT_HF_MODEL = "sentence-transformers/paraphrase-MiniLM-L6-v2"
def get_model_info(model_names,model_name):
    for node in model_names:
        if (model_name == node["name"]):
            return node,model_name
    return get_model_info(model_names,DEFAULT_HF_MODEL)


def run_test(model_names,model_name,input_file_name,sentences,display_area,threshold,user_uploaded,custom_model,clustering_type):
    display_area.text("Loading model:" + model_name)
    #Note. model_name may get mapped to new name in the call below for custom models
    orig_model_name = model_name
    model_info,model_name = get_model_info(model_names,model_name)
    if (model_name != orig_model_name):
        load_model_name  = orig_model_name
    else:
        load_model_name = model_info["model"]
    if ("Note" in model_info):
        fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
        display_area.write(fail_link)
    if (user_uploaded and "custom_load" in model_info and model_info["custom_load"] == "False"):
        fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
        display_area.write(fail_link)
        return {"error":fail_link}
    model = load_model(model_name,model_info["class"],load_model_name)
    display_area.text("Model " + model_name  + " load complete")
    try:
            if (user_uploaded):
                results = uncached_compute_similarity(input_file_name,sentences,model,model_name,threshold,st.session_state["cluster"],clustering_type)
            else:
                display_area.text("Computing vectors for sentences")
                results = cached_compute_similarity(input_file_name,sentences,model,model_name,threshold,st.session_state["cluster"],clustering_type)
                display_area.text("Similarity computation complete")
            return results
            
    except Exception as e:
        st.error("Some error occurred during prediction" + str(e))
        st.stop()
    return {}



    

def display_results(orig_sentences,results,response_info,app_mode,model_name):
    main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
    main_sent += f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">Showing results for model:&nbsp;<b>{model_name}</b></div>"
    score_text = "cosine distance"
    main_sent += f"<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Clustering by {score_text}.&nbsp;<b>{len(results['clusters'])} clusters</b>.&nbsp;&nbsp;mean:{results['info']['mean']:.2f};&nbsp;std:{results['info']['std']:.2f};&nbsp;current threshold:{results['info']['current_threshold']}<br/>Threshold hints:{str(results['info']['zscores'])}<br/>Overlap stats(overlap,freq):{str(results['info']['overlap'])}</div>"
    body_sent = []
    download_data = {}
    for i in range(len(results["clusters"])):
        pivot_index = results["clusters"][i]["pivot_index"]
        pivot_sent = orig_sentences[pivot_index]
        pivot_index +=  1
        d_cluster = {}
        download_data[i + 1] = d_cluster
        d_cluster["pivot"] = {"pivot_index":pivot_index,"sent":pivot_sent,"children":{}}
        body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{pivot_index}]&nbsp;{pivot_sent}&nbsp;<b><i>(Cluster {i+1})</i></b>&nbsp;&nbsp;</div>")
        neighs_dict = results["clusters"][i]["neighs"]
        for key in neighs_dict:
            cosine_dist = neighs_dict[key]
            child_index = key
            sentence = orig_sentences[child_index]
            child_index += 1
            body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{child_index}]&nbsp;{sentence}&nbsp;&nbsp;&nbsp;<b>{cosine_dist:.2f}</b></div>")
            d_cluster["pivot"]["children"][sentence] = f"{cosine_dist:.2f}" 
        body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">&nbsp;</div>")
    main_sent = main_sent + "\n" + '\n'.join(body_sent)
    st.markdown(main_sent,unsafe_allow_html=True)
    st.session_state["download_ready"] = json.dumps(download_data,indent=4)
    get_views("submit")


def init_session():
    if ("model_name" not in st.session_state):
        st.session_state["model_name"] = "ss_test"
        st.session_state["download_ready"] = None    
        st.session_state["model_name"] = "ss_test"
        st.session_state["threshold"] = 1.5
        st.session_state["file_name"] = "default"
        st.session_state["overlapped"] = "overlapped"
        st.session_state["cluster"] = TWCClustering()
    else:
        print("Skipping init session")
 
def app_main(app_mode,example_files,model_name_files,clus_types):
  init_session()
  with open(example_files) as fp:
        example_file_names = json.load(fp) 
  with open(model_name_files) as fp:
        model_names = json.load(fp)
  with open(clus_types) as fp:
        cluster_types = json.load(fp)
  curr_use_case = use_case[app_mode].split(".")[0]
  st.markdown("<h5 style='text-align: center;'>Compare popular/state-of-the-art models for semantic clustering using sentence embeddings</h5>", unsafe_allow_html=True)
  st.markdown(f"<p style='font-size:14px; color: #4f4f4f; text-align: center'><i>Or compare your own model with state-of-the-art/popular models</p>", unsafe_allow_html=True)
  st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for sentence embeddings<br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;<a href=\'{use_case_url['1']}\' target='_blank'>{use_case['1']}</a><br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;<a href=\'{use_case_url['2']}\' target='_blank'>{use_case['2']}</a><br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;{use_case['3']}<br/><i>This app illustrates <b>'{curr_use_case}'</b> use case</i></div>", unsafe_allow_html=True)
  st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views:&nbsp;{get_views('init')}</div>", unsafe_allow_html=True)


  try:
      
      
      with st.form('twc_form'):

        step1_line = "Upload text file(one sentence in a line) or choose an example text file below"
        if (app_mode ==  DOC_RETRIEVAL):
            step1_line += ". The first line is treated as the query"
        uploaded_file = st.file_uploader(step1_line, type=".txt")

        selected_file_index = st.selectbox(label=f'Example files ({len(example_file_names)})',  
                    options = list(dict.keys(example_file_names)), index=0,  key = "twc_file")
        st.write("")
        options_arr,markdown_str = construct_model_info_for_display(model_names)
        selection_label = 'Select Model'
        selected_model = st.selectbox(label=selection_label,  
                    options = options_arr, index=0,  key = "twc_model")
        st.write("")
        custom_model_selection = st.text_input("Model not listed above? Type any Hugging Face sentence embedding model name ", "",key="custom_model")
        hf_link_str = "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><a href='https://huggingface.co/models?pipeline_tag=sentence-similarity' target = '_blank'>List of Hugging Face sentence embedding models</a><br/><br/><br/></div>"
        st.markdown(hf_link_str, unsafe_allow_html=True)
        threshold = st.number_input('Choose a zscore threshold (number of std devs from mean)',value=st.session_state["threshold"],min_value = 0.0,step=.01)
        st.write("")
        clustering_type = st.selectbox(label=f'Select type of clustering',  
                    options = list(dict.keys(cluster_types)), index=0,  key = "twc_cluster_types")
        st.write("")
        submit_button = st.form_submit_button('Run')

        
        input_status_area = st.empty()
        display_area = st.empty()
        if submit_button:
            start = time.time()
            if uploaded_file is not None:
                st.session_state["file_name"]  = uploaded_file.name
                sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
            else:
                st.session_state["file_name"]  = example_file_names[selected_file_index]["name"]
                sentences = open(example_file_names[selected_file_index]["name"]).read()
            sentences = sentences.split("\n")[:-1]
            if (len(sentences) > MAX_INPUT):
                st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
                sentences = sentences[:MAX_INPUT]
            if (len(custom_model_selection) != 0):
                run_model = custom_model_selection
            else:
                run_model = selected_model
            st.session_state["model_name"] = selected_model
            st.session_state["threshold"] = threshold
            st.session_state["overlapped"] = cluster_types[clustering_type]["type"]
            results = run_test(model_names,run_model,st.session_state["file_name"],sentences,display_area,threshold,(uploaded_file is not None),(len(custom_model_selection) != 0),cluster_types[clustering_type]["type"])
            display_area.empty()
            with display_area.container():
                if ("error" in results):
                    st.error(results["error"])
                else:
                    device = 'GPU' if torch.cuda.is_available() else 'CPU'
                    response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
                    if (len(custom_model_selection) != 0):
                        st.info("Custom model overrides model selection in step 2 above. So please clear the custom model text box to choose models from step 2")
                    display_results(sentences,results,response_info,app_mode,run_model)
                    #st.json(results)
      st.download_button(
         label="Download results as json",
         data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
         disabled = False if st.session_state["download_ready"] != None else True,
         file_name= (st.session_state["model_name"] + "_" +  str(st.session_state["threshold"]) + "_" + st.session_state["overlapped"] + "_" +  '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".json").replace("/","_"),
         mime='text/json',
         key ="download" 
        )
      
      

  except Exception as e:
    st.error("Some error occurred during loading" + str(e))
    st.stop()  
	
  st.markdown(markdown_str, unsafe_allow_html=True)
  
 

if __name__ == "__main__":
   #print("comand line input:",len(sys.argv),str(sys.argv))
   #app_main(sys.argv[1],sys.argv[2],sys.argv[3])
   #app_main("1","sim_app_examples.json","sim_app_models.json")
   app_main("3","clus_app_examples.json","clus_app_models.json","clus_app_clustypes.json")