import time import sys import streamlit as st import string from io import StringIO import pdb import json from twc_embeddings import HFModel,SimCSEModel,SGPTModel,CausalLMModel,SGPTQnAModel from twc_openai_embeddings import OpenAIModel from twc_clustering import TWCClustering import torch import requests import socket MAX_INPUT = 10000 SEM_SIMILARITY="1" DOC_RETRIEVAL="2" CLUSTERING="3" use_case = {"1":"Finding similar phrases/sentences","2":"Retrieving semantically matching information to a query. It may not be a factual match","3":"Clustering"} use_case_url = {"1":"https://huggingface.co/spaces/taskswithcode/semantic_similarity","2":"https://huggingface.co/spaces/taskswithcode/semantic_search","3":""} from transformers import BertTokenizer, BertForMaskedLM APP_NAME = "hf/semantic_clustering" INFO_URL = "https://www.taskswithcode.com/stats/" def get_views(action): ret_val = 0 hostname = socket.gethostname() ip_address = socket.gethostbyname(hostname) if ("view_count" not in st.session_state): try: app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address} res = requests.post(INFO_URL, json = app_info).json() print(res) data = res["count"] except: data = 0 ret_val = data st.session_state["view_count"] = data else: ret_val = st.session_state["view_count"] if (action != "init"): app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address} res = requests.post(INFO_URL, json = app_info).json() return "{:,}".format(ret_val) def construct_model_info_for_display(model_names): options_arr = [] markdown_str = f"

Models evaluated ({len(model_names)})
The selected models satisfy one or more of the following (1) state-of-the-art (2) the most downloaded models on Hugging Face (3) Large Language Models (e.g. GPT-3)
" markdown_str += f"

" for node in model_names: options_arr .append(node["name"]) if (node["mark"] == "True"): markdown_str += f"
 • Model: {node['name']}
    Code released by: {node['orig_author']}
    Model info: {node['sota_info']['task']}
" if ("Note" in node): markdown_str += f"
    {node['Note']}link
" markdown_str += "

" markdown_str += "
Note:
• Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not cached
" limit = "{:,}".format(MAX_INPUT) markdown_str += f"
• User uploaded file has a maximum limit of {limit} sentences.
" return options_arr,markdown_str st.set_page_config(page_title='TWC - Compare popular/state-of-the-art models for semantic clustering using sentence embeddings', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto', menu_items={ 'About': 'This app was created by taskswithcode. http://taskswithcode.com' }) col,pad = st.columns([85,15]) with col: st.image("long_form_logo_with_icon.png") @st.experimental_memo def load_model(model_name,model_class,load_model_name): try: ret_model = None obj_class = globals()[model_class] ret_model = obj_class() ret_model.init_model(load_model_name) assert(ret_model is not None) except Exception as e: st.error(f"Unable to load model class:{model_class} model_name: {model_name} load_model_name: {load_model_name} {str(e)}") pass return ret_model @st.experimental_memo def cached_compute_similarity(input_file_name,sentences,_model,model_name,threshold,_cluster,clustering_type): texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False) results = _cluster.cluster(None,texts,embeddings,threshold,clustering_type) return results def uncached_compute_similarity(input_file_name,sentences,_model,model_name,threshold,cluster,clustering_type): with st.spinner('Computing vectors for sentences'): texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False) results = cluster.cluster(None,texts,embeddings,threshold,clustering_type) #st.success("Similarity computation complete") return results DEFAULT_HF_MODEL = "sentence-transformers/paraphrase-MiniLM-L6-v2" def get_model_info(model_names,model_name): for node in model_names: if (model_name == node["name"]): return node,model_name return get_model_info(model_names,DEFAULT_HF_MODEL) def run_test(model_names,model_name,input_file_name,sentences,display_area,threshold,user_uploaded,custom_model,clustering_type): display_area.text("Loading model:" + model_name) #Note. model_name may get mapped to new name in the call below for custom models orig_model_name = model_name model_info,model_name = get_model_info(model_names,model_name) if (model_name != orig_model_name): load_model_name = orig_model_name else: load_model_name = model_info["model"] if ("Note" in model_info): fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})" display_area.write(fail_link) if (user_uploaded and "custom_load" in model_info and model_info["custom_load"] == "False"): fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})" display_area.write(fail_link) return {"error":fail_link} model = load_model(model_name,model_info["class"],load_model_name) display_area.text("Model " + model_name + " load complete") try: if (user_uploaded): results = uncached_compute_similarity(input_file_name,sentences,model,model_name,threshold,st.session_state["cluster"],clustering_type) else: display_area.text("Computing vectors for sentences") results = cached_compute_similarity(input_file_name,sentences,model,model_name,threshold,st.session_state["cluster"],clustering_type) display_area.text("Similarity computation complete") return results except Exception as e: st.error("Some error occurred during prediction" + str(e)) st.stop() return {} def display_results(orig_sentences,results,response_info,app_mode,model_name): main_sent = f"
{response_info}

" main_sent += f"
Showing results for model: {model_name}
" score_text = "cosine distance" main_sent += f"
Clustering by {score_text}. {len(results['clusters'])} clusters.  mean:{results['info']['mean']:.2f}; std:{results['info']['std']:.2f}; current threshold:{results['info']['current_threshold']}
Threshold hints:{str(results['info']['zscores'])}
Overlap stats(overlap,freq):{str(results['info']['overlap'])}
" body_sent = [] download_data = {} for i in range(len(results["clusters"])): pivot_index = results["clusters"][i]["pivot_index"] pivot_sent = orig_sentences[pivot_index] pivot_index += 1 d_cluster = {} download_data[i + 1] = d_cluster d_cluster["pivot"] = {"pivot_index":pivot_index,"sent":pivot_sent,"children":{}} body_sent.append(f"
{pivot_index}] {pivot_sent} (Cluster {i+1})  
") neighs_dict = results["clusters"][i]["neighs"] for key in neighs_dict: cosine_dist = neighs_dict[key] child_index = key sentence = orig_sentences[child_index] child_index += 1 body_sent.append(f"
{child_index}] {sentence}   {cosine_dist:.2f}
") d_cluster["pivot"]["children"][sentence] = f"{cosine_dist:.2f}" body_sent.append(f"
 
") main_sent = main_sent + "\n" + '\n'.join(body_sent) st.markdown(main_sent,unsafe_allow_html=True) st.session_state["download_ready"] = json.dumps(download_data,indent=4) get_views("submit") def init_session(): if ("model_name" not in st.session_state): st.session_state["model_name"] = "ss_test" st.session_state["download_ready"] = None st.session_state["model_name"] = "ss_test" st.session_state["threshold"] = 1.5 st.session_state["file_name"] = "default" st.session_state["overlapped"] = "overlapped" st.session_state["cluster"] = TWCClustering() else: print("Skipping init session") def app_main(app_mode,example_files,model_name_files,clus_types): init_session() with open(example_files) as fp: example_file_names = json.load(fp) with open(model_name_files) as fp: model_names = json.load(fp) with open(clus_types) as fp: cluster_types = json.load(fp) curr_use_case = use_case[app_mode].split(".")[0] st.markdown("
Compare popular/state-of-the-art models for semantic clustering using sentence embeddings
", unsafe_allow_html=True) st.markdown(f"

Or compare your own model with state-of-the-art/popular models

", unsafe_allow_html=True) st.markdown(f"
Use cases for sentence embeddings
   •  {use_case['1']}
   •  {use_case['2']}
   •  {use_case['3']}
This app illustrates '{curr_use_case}' use case
", unsafe_allow_html=True) st.markdown(f"
views: {get_views('init')}
", unsafe_allow_html=True) try: with st.form('twc_form'): step1_line = "Upload text file(one sentence in a line) or choose an example text file below" if (app_mode == DOC_RETRIEVAL): step1_line += ". The first line is treated as the query" uploaded_file = st.file_uploader(step1_line, type=".txt") selected_file_index = st.selectbox(label=f'Example files ({len(example_file_names)})', options = list(dict.keys(example_file_names)), index=0, key = "twc_file") st.write("") options_arr,markdown_str = construct_model_info_for_display(model_names) selection_label = 'Select Model' selected_model = st.selectbox(label=selection_label, options = options_arr, index=0, key = "twc_model") st.write("") custom_model_selection = st.text_input("Model not listed above? Type any Hugging Face sentence embedding model name ", "",key="custom_model") hf_link_str = "
List of Hugging Face sentence embedding models


" st.markdown(hf_link_str, unsafe_allow_html=True) threshold = st.number_input('Choose a zscore threshold (number of std devs from mean)',value=st.session_state["threshold"],min_value = 0.0,step=.01) st.write("") clustering_type = st.selectbox(label=f'Select type of clustering', options = list(dict.keys(cluster_types)), index=0, key = "twc_cluster_types") st.write("") submit_button = st.form_submit_button('Run') input_status_area = st.empty() display_area = st.empty() if submit_button: start = time.time() if uploaded_file is not None: st.session_state["file_name"] = uploaded_file.name sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read() else: st.session_state["file_name"] = example_file_names[selected_file_index]["name"] sentences = open(example_file_names[selected_file_index]["name"]).read() sentences = sentences.split("\n")[:-1] if (len(sentences) > MAX_INPUT): st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen") sentences = sentences[:MAX_INPUT] if (len(custom_model_selection) != 0): run_model = custom_model_selection else: run_model = selected_model st.session_state["model_name"] = selected_model st.session_state["threshold"] = threshold st.session_state["overlapped"] = cluster_types[clustering_type]["type"] results = run_test(model_names,run_model,st.session_state["file_name"],sentences,display_area,threshold,(uploaded_file is not None),(len(custom_model_selection) != 0),cluster_types[clustering_type]["type"]) display_area.empty() with display_area.container(): if ("error" in results): st.error(results["error"]) else: device = 'GPU' if torch.cuda.is_available() else 'CPU' response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences" if (len(custom_model_selection) != 0): st.info("Custom model overrides model selection in step 2 above. So please clear the custom model text box to choose models from step 2") display_results(sentences,results,response_info,app_mode,run_model) #st.json(results) st.download_button( label="Download results as json", data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "", disabled = False if st.session_state["download_ready"] != None else True, file_name= (st.session_state["model_name"] + "_" + str(st.session_state["threshold"]) + "_" + st.session_state["overlapped"] + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".json").replace("/","_"), mime='text/json', key ="download" ) except Exception as e: st.error("Some error occurred during loading" + str(e)) st.stop() st.markdown(markdown_str, unsafe_allow_html=True) if __name__ == "__main__": #print("comand line input:",len(sys.argv),str(sys.argv)) #app_main(sys.argv[1],sys.argv[2],sys.argv[3]) #app_main("1","sim_app_examples.json","sim_app_models.json") app_main("3","clus_app_examples.json","clus_app_models.json","clus_app_clustypes.json")