|
import cv2 |
|
import torch |
|
import numpy as np |
|
import time |
|
from midas.model_loader import default_models, load_model |
|
import os |
|
import urllib.request |
|
|
|
MODEL_FILE_URL = { |
|
"midas_v21_small_256" : "https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt", |
|
"dpt_hybrid_384" : "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid_384.pt", |
|
"dpt_large_384" : "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large_384.pt", |
|
"dpt_swin2_large_384" : "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_large_384.pt", |
|
"dpt_beit_large_512" : "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt", |
|
} |
|
|
|
class MonocularDepthEstimator: |
|
def __init__(self, |
|
model_type="midas_v21_small_256", |
|
model_weights_path="models/", |
|
optimize=False, |
|
side_by_side=False, |
|
height=None, |
|
square=False, |
|
grayscale=False): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("Initializing parameters and model...") |
|
self.is_optimize = optimize |
|
self.is_square = square |
|
self.is_grayscale = grayscale |
|
self.height = height |
|
self.side_by_side = side_by_side |
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print("Running inference on : %s" % self.device) |
|
|
|
|
|
if not os.path.exists(model_weights_path+model_type+".pt"): |
|
print("Model file not found. Downloading...") |
|
|
|
urllib.request.urlretrieve(MODEL_FILE_URL[model_type], model_weights_path+model_type+".pt") |
|
print("Model file downloaded successfully.") |
|
|
|
self.model, self.transform, self.net_w, self.net_h = load_model(self.device, model_weights_path+model_type+".pt", |
|
model_type, optimize, height, square) |
|
print("Net width and height: ", (self.net_w, self.net_h)) |
|
|
|
|
|
def predict(self, image, model, target_size): |
|
|
|
|
|
|
|
img_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0) |
|
|
|
if self.is_optimize and self.device == torch.device("cuda"): |
|
img_tensor = img_tensor.to(memory_format=torch.channels_last) |
|
img_tensor = img_tensor.half() |
|
|
|
prediction = model.forward(img_tensor) |
|
prediction = ( |
|
torch.nn.functional.interpolate( |
|
prediction.unsqueeze(1), |
|
size=target_size[::-1], |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
.squeeze() |
|
.cpu() |
|
.numpy() |
|
) |
|
|
|
return prediction |
|
|
|
def process_prediction(self, depth_map): |
|
""" |
|
Take an RGB image and depth map and place them side by side. This includes a proper normalization of the depth map |
|
for better visibility. |
|
Args: |
|
original_img: the RGB image |
|
depth_img: the depth map |
|
is_grayscale: use a grayscale colormap? |
|
Returns: |
|
the image and depth map place side by side |
|
""" |
|
|
|
|
|
depth_min = depth_map.min() |
|
depth_max = depth_map.max() |
|
normalized_depth = 255 * (depth_map - depth_min) / (depth_max - depth_min) |
|
|
|
|
|
|
|
grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2) |
|
depth_colormap = cv2.applyColorMap(np.uint8(grayscale_depthmap), cv2.COLORMAP_INFERNO) |
|
|
|
return normalized_depth/255, depth_colormap/255 |
|
|
|
def make_prediction(self, image): |
|
image = image.copy() |
|
with torch.no_grad(): |
|
original_image_rgb = np.flip(image, 2) |
|
|
|
image_tranformed = self.transform({"image": original_image_rgb/255})["image"] |
|
|
|
|
|
pred = self.predict(image_tranformed, self.model, target_size=original_image_rgb.shape[1::-1]) |
|
|
|
|
|
depthmap, depth_colormap = self.process_prediction(pred) |
|
return depthmap, depth_colormap |
|
|
|
def run(self, input_path): |
|
|
|
|
|
cap = cv2.VideoCapture(input_path) |
|
|
|
|
|
if not cap.isOpened(): |
|
print("Error opening video file") |
|
|
|
with torch.no_grad(): |
|
while cap.isOpened(): |
|
|
|
|
|
inference_start_time = time.time() |
|
ret, frame = cap.read() |
|
|
|
if ret == True: |
|
_, depth_colormap = self.make_prediction(frame) |
|
inference_end_time = time.time() |
|
fps = round(1/(inference_end_time - inference_start_time)) |
|
cv2.putText(depth_colormap, f'FPS: {fps}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (10, 255, 100), 2) |
|
cv2.imshow('MiDaS Depth Estimation - Press Escape to close window ', depth_colormap) |
|
|
|
|
|
if cv2.waitKey(1) == 27: |
|
break |
|
|
|
else: |
|
break |
|
|
|
|
|
|
|
|
|
cap.release() |
|
|
|
|
|
cv2.destroyAllWindows() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
INPUT_PATH = "assets/videos/testvideo2.mp4" |
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
|
|
|
|
|
torch.backends.cudnn.enabled = True |
|
torch.backends.cudnn.benchmark = True |
|
|
|
depth_estimator = MonocularDepthEstimator(model_type="dpt_hybrid_384") |
|
depth_estimator.run(INPUT_PATH) |
|
|
|
|