|
import cv2 |
|
import numpy as np |
|
from point_cloud_generator import PointCloudGenerator |
|
|
|
|
|
|
|
def resize(image): |
|
""" |
|
resize the input nd array |
|
""" |
|
h, w = image.shape[:2] |
|
if h > w: |
|
return cv2.resize(image, (480, 640)) |
|
else: |
|
return cv2.resize(image, (640, 480)) |
|
|
|
def get_masked_depth(depth_map, mask): |
|
masked_depth_map = depth_map*mask |
|
pixel_depth_vals = masked_depth_map[masked_depth_map>0] |
|
mean_depth = np.mean(pixel_depth_vals) |
|
return masked_depth_map, 1-mean_depth |
|
|
|
def draw_depth_info(image, depth_map, objects_data): |
|
image = image.copy() |
|
|
|
for data in objects_data: |
|
center = data[2] |
|
mask = data[3] |
|
_, depth = get_masked_depth(depth_map, mask) |
|
cv2.rectangle(image, (center[0]-15, center[1]-15), (center[0]+(len(str(round(depth*10, 2))+'m')*12), center[1]+15), data[4], -1) |
|
cv2.putText(image, str(round(depth*10, 2))+'m', (center[0]-5, center[1]+5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2) |
|
|
|
return image |
|
|
|
def generate_obj_pcd(depth_map, objects_data): |
|
objs_pcd = [] |
|
pcd_generator = PointCloudGenerator() |
|
|
|
for data in objects_data: |
|
mask = data[3] |
|
cls_clr = data[4] |
|
masked_depth = depth_map*mask |
|
|
|
pcd = pcd_generator.generate_point_cloud(masked_depth) |
|
objs_pcd.append((pcd, cls_clr)) |
|
return objs_pcd |
|
|
|
|
|
|
|
|
|
|