Spaces:
Runtime error
Runtime error
xunsong.li
commited on
Commit
•
ae534d1
1
Parent(s):
7ccc423
add demo for hf space
Browse files- app.py +10 -0
- local_app.py +263 -0
app.py
CHANGED
@@ -7,6 +7,7 @@ import numpy as np
|
|
7 |
import torch
|
8 |
from diffusers import AutoencoderKL, DDIMScheduler
|
9 |
from einops import repeat
|
|
|
10 |
from omegaconf import OmegaConf
|
11 |
from PIL import Image
|
12 |
from torchvision import transforms
|
@@ -18,6 +19,15 @@ from src.models.unet_3d import UNet3DConditionModel
|
|
18 |
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
19 |
from src.utils.util import get_fps, read_frames, save_videos_grid
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
class AnimateController:
|
23 |
def __init__(
|
|
|
7 |
import torch
|
8 |
from diffusers import AutoencoderKL, DDIMScheduler
|
9 |
from einops import repeat
|
10 |
+
from huggingface_hub import snapshot_download
|
11 |
from omegaconf import OmegaConf
|
12 |
from PIL import Image
|
13 |
from torchvision import transforms
|
|
|
19 |
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
20 |
from src.utils.util import get_fps, read_frames, save_videos_grid
|
21 |
|
22 |
+
snapshot_download(
|
23 |
+
repo_id="runwayml/stable-diffusion-v1-5",
|
24 |
+
local_dir="./pretrained_weights/stable-diffusion-v1-5",
|
25 |
+
)
|
26 |
+
snapshot_download(
|
27 |
+
repo_id="stabilityai/sd-vae-ft-mse", local_dir="./pretrained_weights/sd-vae-ft-mse"
|
28 |
+
)
|
29 |
+
snapshot_download(repo_id="patrolli/AnimateAnyone", local_dir="./pretrained_weights")
|
30 |
+
|
31 |
|
32 |
class AnimateController:
|
33 |
def __init__(
|
local_app.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from datetime import datetime
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
9 |
+
from einops import repeat
|
10 |
+
from omegaconf import OmegaConf
|
11 |
+
from PIL import Image
|
12 |
+
from torchvision import transforms
|
13 |
+
from transformers import CLIPVisionModelWithProjection
|
14 |
+
|
15 |
+
from src.models.pose_guider import PoseGuider
|
16 |
+
from src.models.unet_2d_condition import UNet2DConditionModel
|
17 |
+
from src.models.unet_3d import UNet3DConditionModel
|
18 |
+
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
19 |
+
from src.utils.util import get_fps, read_frames, save_videos_grid
|
20 |
+
|
21 |
+
|
22 |
+
class AnimateController:
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
config_path="./configs/prompts/animation.yaml",
|
26 |
+
weight_dtype=torch.float16,
|
27 |
+
):
|
28 |
+
# Read pretrained weights path from config
|
29 |
+
self.config = OmegaConf.load(config_path)
|
30 |
+
self.pipeline = None
|
31 |
+
self.weight_dtype = weight_dtype
|
32 |
+
|
33 |
+
def animate(
|
34 |
+
self,
|
35 |
+
ref_image,
|
36 |
+
pose_video_path,
|
37 |
+
width=512,
|
38 |
+
height=768,
|
39 |
+
length=24,
|
40 |
+
num_inference_steps=25,
|
41 |
+
cfg=3.5,
|
42 |
+
seed=123,
|
43 |
+
):
|
44 |
+
generator = torch.manual_seed(seed)
|
45 |
+
if isinstance(ref_image, np.ndarray):
|
46 |
+
ref_image = Image.fromarray(ref_image)
|
47 |
+
if self.pipeline is None:
|
48 |
+
vae = AutoencoderKL.from_pretrained(
|
49 |
+
self.config.pretrained_vae_path,
|
50 |
+
).to("cuda", dtype=self.weight_dtype)
|
51 |
+
|
52 |
+
reference_unet = UNet2DConditionModel.from_pretrained(
|
53 |
+
self.config.pretrained_base_model_path,
|
54 |
+
subfolder="unet",
|
55 |
+
).to(dtype=self.weight_dtype, device="cuda")
|
56 |
+
|
57 |
+
inference_config_path = self.config.inference_config
|
58 |
+
infer_config = OmegaConf.load(inference_config_path)
|
59 |
+
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
60 |
+
self.config.pretrained_base_model_path,
|
61 |
+
self.config.motion_module_path,
|
62 |
+
subfolder="unet",
|
63 |
+
unet_additional_kwargs=infer_config.unet_additional_kwargs,
|
64 |
+
).to(dtype=self.weight_dtype, device="cuda")
|
65 |
+
|
66 |
+
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
|
67 |
+
dtype=self.weight_dtype, device="cuda"
|
68 |
+
)
|
69 |
+
|
70 |
+
image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
71 |
+
self.config.image_encoder_path
|
72 |
+
).to(dtype=self.weight_dtype, device="cuda")
|
73 |
+
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
|
74 |
+
scheduler = DDIMScheduler(**sched_kwargs)
|
75 |
+
|
76 |
+
# load pretrained weights
|
77 |
+
denoising_unet.load_state_dict(
|
78 |
+
torch.load(self.config.denoising_unet_path, map_location="cpu"),
|
79 |
+
strict=False,
|
80 |
+
)
|
81 |
+
reference_unet.load_state_dict(
|
82 |
+
torch.load(self.config.reference_unet_path, map_location="cpu"),
|
83 |
+
)
|
84 |
+
pose_guider.load_state_dict(
|
85 |
+
torch.load(self.config.pose_guider_path, map_location="cpu"),
|
86 |
+
)
|
87 |
+
|
88 |
+
pipe = Pose2VideoPipeline(
|
89 |
+
vae=vae,
|
90 |
+
image_encoder=image_enc,
|
91 |
+
reference_unet=reference_unet,
|
92 |
+
denoising_unet=denoising_unet,
|
93 |
+
pose_guider=pose_guider,
|
94 |
+
scheduler=scheduler,
|
95 |
+
)
|
96 |
+
pipe = pipe.to("cuda", dtype=self.weight_dtype)
|
97 |
+
self.pipeline = pipe
|
98 |
+
|
99 |
+
pose_images = read_frames(pose_video_path)
|
100 |
+
src_fps = get_fps(pose_video_path)
|
101 |
+
|
102 |
+
pose_list = []
|
103 |
+
pose_tensor_list = []
|
104 |
+
pose_transform = transforms.Compose(
|
105 |
+
[transforms.Resize((height, width)), transforms.ToTensor()]
|
106 |
+
)
|
107 |
+
for pose_image_pil in pose_images[:length]:
|
108 |
+
pose_list.append(pose_image_pil)
|
109 |
+
pose_tensor_list.append(pose_transform(pose_image_pil))
|
110 |
+
|
111 |
+
video = self.pipeline(
|
112 |
+
ref_image,
|
113 |
+
pose_list,
|
114 |
+
width=width,
|
115 |
+
height=height,
|
116 |
+
video_length=length,
|
117 |
+
num_inference_steps=num_inference_steps,
|
118 |
+
guidance_scale=cfg,
|
119 |
+
generator=generator,
|
120 |
+
).videos
|
121 |
+
|
122 |
+
ref_image_tensor = pose_transform(ref_image) # (c, h, w)
|
123 |
+
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
|
124 |
+
ref_image_tensor = repeat(
|
125 |
+
ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=length
|
126 |
+
)
|
127 |
+
pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)
|
128 |
+
pose_tensor = pose_tensor.transpose(0, 1)
|
129 |
+
pose_tensor = pose_tensor.unsqueeze(0)
|
130 |
+
video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0)
|
131 |
+
|
132 |
+
save_dir = f"./output/gradio"
|
133 |
+
if not os.path.exists(save_dir):
|
134 |
+
os.makedirs(save_dir, exist_ok=True)
|
135 |
+
date_str = datetime.now().strftime("%Y%m%d")
|
136 |
+
time_str = datetime.now().strftime("%H%M")
|
137 |
+
out_path = os.path.join(save_dir, f"{date_str}T{time_str}.mp4")
|
138 |
+
save_videos_grid(
|
139 |
+
video,
|
140 |
+
out_path,
|
141 |
+
n_rows=3,
|
142 |
+
fps=src_fps,
|
143 |
+
)
|
144 |
+
|
145 |
+
torch.cuda.empty_cache()
|
146 |
+
|
147 |
+
return out_path
|
148 |
+
|
149 |
+
|
150 |
+
controller = AnimateController()
|
151 |
+
|
152 |
+
|
153 |
+
def ui():
|
154 |
+
with gr.Blocks() as demo:
|
155 |
+
gr.Markdown(
|
156 |
+
"""
|
157 |
+
# Moore-AnimateAnyone Demo
|
158 |
+
"""
|
159 |
+
)
|
160 |
+
animation = gr.Video(
|
161 |
+
format="mp4",
|
162 |
+
label="Animation Results",
|
163 |
+
height=448,
|
164 |
+
autoplay=True,
|
165 |
+
)
|
166 |
+
|
167 |
+
with gr.Row():
|
168 |
+
reference_image = gr.Image(label="Reference Image")
|
169 |
+
motion_sequence = gr.Video(
|
170 |
+
format="mp4", label="Motion Sequence", height=512
|
171 |
+
)
|
172 |
+
|
173 |
+
with gr.Column():
|
174 |
+
width_slider = gr.Slider(
|
175 |
+
label="Width", minimum=448, maximum=768, value=512, step=64
|
176 |
+
)
|
177 |
+
height_slider = gr.Slider(
|
178 |
+
label="Height", minimum=512, maximum=1024, value=768, step=64
|
179 |
+
)
|
180 |
+
length_slider = gr.Slider(
|
181 |
+
label="Video Length", minimum=24, maximum=128, value=24, step=24
|
182 |
+
)
|
183 |
+
with gr.Row():
|
184 |
+
seed_textbox = gr.Textbox(label="Seed", value=-1)
|
185 |
+
seed_button = gr.Button(
|
186 |
+
value="\U0001F3B2", elem_classes="toolbutton"
|
187 |
+
)
|
188 |
+
seed_button.click(
|
189 |
+
fn=lambda: gr.Textbox.update(value=random.randint(1, 1e8)),
|
190 |
+
inputs=[],
|
191 |
+
outputs=[seed_textbox],
|
192 |
+
)
|
193 |
+
with gr.Row():
|
194 |
+
sampling_steps = gr.Slider(
|
195 |
+
label="Sampling steps",
|
196 |
+
value=25,
|
197 |
+
info="default: 25",
|
198 |
+
step=5,
|
199 |
+
maximum=30,
|
200 |
+
minimum=10,
|
201 |
+
)
|
202 |
+
guidance_scale = gr.Slider(
|
203 |
+
label="Guidance scale",
|
204 |
+
value=3.5,
|
205 |
+
info="default: 3.5",
|
206 |
+
step=0.5,
|
207 |
+
maximum=10,
|
208 |
+
minimum=2.0,
|
209 |
+
)
|
210 |
+
submit = gr.Button("Animate")
|
211 |
+
|
212 |
+
def read_video(video):
|
213 |
+
return video
|
214 |
+
|
215 |
+
def read_image(image):
|
216 |
+
return Image.fromarray(image)
|
217 |
+
|
218 |
+
# when user uploads a new video
|
219 |
+
motion_sequence.upload(read_video, motion_sequence, motion_sequence)
|
220 |
+
# when `first_frame` is updated
|
221 |
+
reference_image.upload(read_image, reference_image, reference_image)
|
222 |
+
# when the `submit` button is clicked
|
223 |
+
submit.click(
|
224 |
+
controller.animate,
|
225 |
+
[
|
226 |
+
reference_image,
|
227 |
+
motion_sequence,
|
228 |
+
width_slider,
|
229 |
+
height_slider,
|
230 |
+
length_slider,
|
231 |
+
sampling_steps,
|
232 |
+
guidance_scale,
|
233 |
+
seed_textbox,
|
234 |
+
],
|
235 |
+
animation,
|
236 |
+
)
|
237 |
+
|
238 |
+
# Examples
|
239 |
+
gr.Markdown("## Examples")
|
240 |
+
gr.Examples(
|
241 |
+
examples=[
|
242 |
+
[
|
243 |
+
"./configs/inference/ref_images/anyone-5.png",
|
244 |
+
"./configs/inference/pose_videos/anyone-video-2_kps.mp4",
|
245 |
+
],
|
246 |
+
[
|
247 |
+
"./configs/inference/ref_images/anyone-10.png",
|
248 |
+
"./configs/inference/pose_videos/anyone-video-1_kps.mp4",
|
249 |
+
],
|
250 |
+
[
|
251 |
+
"./configs/inference/ref_images/anyone-2.png",
|
252 |
+
"./configs/inference/pose_videos/anyone-video-5_kps.mp4",
|
253 |
+
],
|
254 |
+
],
|
255 |
+
inputs=[reference_image, motion_sequence],
|
256 |
+
outputs=animation,
|
257 |
+
)
|
258 |
+
|
259 |
+
return demo
|
260 |
+
|
261 |
+
|
262 |
+
demo = ui()
|
263 |
+
demo.launch(share=True)
|