cyberosa
commited on
Commit
·
4cb55cc
1
Parent(s):
5a04992
updated live data and average time evolution graph
Browse files
live_data/markets_live_data.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69a3fffac1b1e11e818cdf3c709fd3006d6f93107df947693548a05bc66f337d
|
3 |
+
size 145777
|
live_data/markets_live_data_sample.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef505e34ed9cf0b28b18b2ba22952bc89c7c70a40dae9ce5ce4e2141898d4010
|
3 |
+
size 140888
|
tabs/dist_gap.py
CHANGED
@@ -2,7 +2,7 @@ import pandas as pd
|
|
2 |
import gradio as gr
|
3 |
import matplotlib.pyplot as plt
|
4 |
import seaborn as sns
|
5 |
-
from
|
6 |
import plotly.express as px
|
7 |
|
8 |
HEIGHT = 300
|
@@ -49,20 +49,36 @@ def get_dist_gap_timeline_plotly(market_id: str, all_markets: pd.DataFrame) -> g
|
|
49 |
|
50 |
|
51 |
def get_avg_gap_time_evolution(all_markets: pd.DataFrame) -> gr.Plot:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
avg_dist_gap_perc = (
|
53 |
-
|
|
|
|
|
54 |
)
|
55 |
-
avg_dist_gap_perc["
|
56 |
avg_dist_gap_perc.rename(
|
57 |
columns={"dist_gap_perc": "mean_dist_gap_perc"}, inplace=True
|
58 |
)
|
59 |
-
fig = px.line(
|
|
|
|
|
|
|
|
|
|
|
60 |
fig.update_layout(
|
61 |
-
xaxis_title="Day
|
62 |
yaxis_title="Mean dist gap percentage (%)",
|
63 |
)
|
64 |
-
# fig.update_layout(width=WIDTH, height=HEIGHT)
|
65 |
-
# fig.update_xaxes(tickangle=45)
|
66 |
fig.update_xaxes(tickformat="%b-%d-%Y")
|
67 |
return gr.Plot(value=fig)
|
68 |
|
|
|
2 |
import gradio as gr
|
3 |
import matplotlib.pyplot as plt
|
4 |
import seaborn as sns
|
5 |
+
from datetime import datetime, UTC
|
6 |
import plotly.express as px
|
7 |
|
8 |
HEIGHT = 300
|
|
|
49 |
|
50 |
|
51 |
def get_avg_gap_time_evolution(all_markets: pd.DataFrame) -> gr.Plot:
|
52 |
+
# filter by the opening datetime
|
53 |
+
current = pd.Timestamp("today")
|
54 |
+
|
55 |
+
recent_markets = all_markets.loc[all_markets["opening_datetime"] > current]
|
56 |
+
recent_markets["creation_datetime"] = recent_markets["creationTimestamp"].apply(
|
57 |
+
lambda x: datetime.fromtimestamp(int(x))
|
58 |
+
)
|
59 |
+
|
60 |
+
recent_markets["creation_date"] = pd.to_datetime(
|
61 |
+
recent_markets["creation_datetime"]
|
62 |
+
).dt.date
|
63 |
avg_dist_gap_perc = (
|
64 |
+
recent_markets.groupby(["sample_date", "creation_date"])["dist_gap_perc"]
|
65 |
+
.mean()
|
66 |
+
.reset_index()
|
67 |
)
|
68 |
+
avg_dist_gap_perc["creation_date"] = avg_dist_gap_perc["creation_date"].astype(str)
|
69 |
avg_dist_gap_perc.rename(
|
70 |
columns={"dist_gap_perc": "mean_dist_gap_perc"}, inplace=True
|
71 |
)
|
72 |
+
fig = px.line(
|
73 |
+
avg_dist_gap_perc,
|
74 |
+
x="sample_date",
|
75 |
+
y="mean_dist_gap_perc",
|
76 |
+
color="creation_date",
|
77 |
+
)
|
78 |
fig.update_layout(
|
79 |
+
xaxis_title="Day the samples were collected",
|
80 |
yaxis_title="Mean dist gap percentage (%)",
|
81 |
)
|
|
|
|
|
82 |
fig.update_xaxes(tickformat="%b-%d-%Y")
|
83 |
return gr.Plot(value=fig)
|
84 |
|