cyberosa
commited on
Commit
·
a46bb55
1
Parent(s):
773f144
adding more graphs
Browse files- app.py +40 -29
- notebooks/analysis_of_markets_data.ipynb +0 -0
- tabs/dist_gap.py +49 -1
- tabs/tokens_votes_dist.py +6 -7
app.py
CHANGED
@@ -9,7 +9,11 @@ from tabs.tokens_votes_dist import (
|
|
9 |
get_based_tokens_distribution,
|
10 |
get_based_votes_distribution,
|
11 |
)
|
12 |
-
from tabs.dist_gap import
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
def get_logger():
|
@@ -45,6 +49,10 @@ def prepare_data():
|
|
45 |
df["sample_datetime"] = df["sample_timestamp"].apply(
|
46 |
lambda x: datetime.fromtimestamp(x)
|
47 |
)
|
|
|
|
|
|
|
|
|
48 |
return df
|
49 |
|
50 |
|
@@ -74,16 +82,19 @@ with demo:
|
|
74 |
with gr.Tabs():
|
75 |
with gr.TabItem("💹 Probability distributions of live markets"):
|
76 |
with gr.Row():
|
77 |
-
gr.Markdown("
|
78 |
-
|
79 |
-
with gr.Row():
|
80 |
-
gr.Markdown("Best case: a market with a low distribution gap metric")
|
81 |
with gr.Row():
|
82 |
gr.Markdown(f"Market id = {best_market_id}")
|
83 |
with gr.Row():
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
with gr.Row():
|
89 |
gr.Markdown("Worst case: a market with a high distribution gap metric")
|
@@ -91,36 +102,36 @@ with demo:
|
|
91 |
gr.Markdown(f"Market id = {worst_market_id}")
|
92 |
|
93 |
with gr.Row():
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
|
|
98 |
with gr.Row():
|
99 |
-
gr.Markdown(
|
100 |
-
|
101 |
-
gr.Markdown("Best case: a market with a low distribution gap metric")
|
102 |
-
with gr.Row():
|
103 |
-
gr.Markdown(f"Market id = {best_market_id}")
|
104 |
-
with gr.Row():
|
105 |
-
best_market_votes_dist = get_based_votes_distribution(
|
106 |
-
best_market_id, markets_data
|
107 |
)
|
108 |
with gr.Row():
|
109 |
-
gr.Markdown("
|
110 |
with gr.Row():
|
111 |
-
|
112 |
|
113 |
with gr.Row():
|
114 |
-
|
115 |
-
worst_market_id, markets_data
|
116 |
-
)
|
117 |
|
118 |
-
with gr.TabItem("📏 Distribution gap metric"):
|
119 |
with gr.Row():
|
120 |
-
|
121 |
-
"This metric measures the difference between the probability distribution based on the tokens distribution and the one based on the votes distribution"
|
122 |
-
)
|
123 |
|
124 |
with gr.Row():
|
125 |
-
|
|
|
|
|
|
|
|
|
126 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
9 |
get_based_tokens_distribution,
|
10 |
get_based_votes_distribution,
|
11 |
)
|
12 |
+
from tabs.dist_gap import (
|
13 |
+
get_distribution_plot,
|
14 |
+
get_correlation_map,
|
15 |
+
get_kde_with_trades,
|
16 |
+
)
|
17 |
|
18 |
|
19 |
def get_logger():
|
|
|
49 |
df["sample_datetime"] = df["sample_timestamp"].apply(
|
50 |
lambda x: datetime.fromtimestamp(x)
|
51 |
)
|
52 |
+
df["opening_datetime"] = df["openingTimestamp"].apply(
|
53 |
+
lambda x: datetime.fromtimestamp(int(x))
|
54 |
+
)
|
55 |
+
df["days_to_resolution"] = (df["opening_datetime"] - df["sample_datetime"]).dt.days
|
56 |
return df
|
57 |
|
58 |
|
|
|
82 |
with gr.Tabs():
|
83 |
with gr.TabItem("💹 Probability distributions of live markets"):
|
84 |
with gr.Row():
|
85 |
+
gr.Markdown("Best case: a market with a low gap between distributions")
|
|
|
|
|
|
|
86 |
with gr.Row():
|
87 |
gr.Markdown(f"Market id = {best_market_id}")
|
88 |
with gr.Row():
|
89 |
+
with gr.Column(scale=1, min_width=300):
|
90 |
+
# gr.Markdown("# Evolution of outcomes probability based on tokens")
|
91 |
+
best_market_tokens_dist = get_based_tokens_distribution(
|
92 |
+
best_market_id, markets_data
|
93 |
+
)
|
94 |
+
with gr.Column(scale=2, min_width=300):
|
95 |
+
best_market_votes_dist = get_based_votes_distribution(
|
96 |
+
best_market_id, markets_data
|
97 |
+
)
|
98 |
|
99 |
with gr.Row():
|
100 |
gr.Markdown("Worst case: a market with a high distribution gap metric")
|
|
|
102 |
gr.Markdown(f"Market id = {worst_market_id}")
|
103 |
|
104 |
with gr.Row():
|
105 |
+
with gr.Column(scale=1, min_width=300):
|
106 |
+
# gr.Markdown("# Evolution of outcomes probability based on tokens")
|
107 |
+
worst_market_tokens_dist = get_based_tokens_distribution(
|
108 |
+
worst_market_id, markets_data
|
109 |
+
)
|
110 |
+
with gr.Column(scale=2, min_width=300):
|
111 |
+
worst_market_votes_dist = get_based_votes_distribution(
|
112 |
+
worst_market_id, markets_data
|
113 |
+
)
|
114 |
|
115 |
+
with gr.TabItem("📏 Distribution gap metric"):
|
116 |
with gr.Row():
|
117 |
+
gr.Markdown(
|
118 |
+
"This metric measures the difference between the probability distribution based on the tokens distribution and the one based on the votes distribution"
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
)
|
120 |
with gr.Row():
|
121 |
+
gr.Markdown("# Density distribution")
|
122 |
with gr.Row():
|
123 |
+
kde_plot = get_distribution_plot(markets_data)
|
124 |
|
125 |
with gr.Row():
|
126 |
+
gr.Markdown("# Relationship with number of trades")
|
|
|
|
|
127 |
|
|
|
128 |
with gr.Row():
|
129 |
+
kde_trades_plot = get_kde_with_trades(markets_data)
|
|
|
|
|
130 |
|
131 |
with gr.Row():
|
132 |
+
gr.Markdown("# Correlation analysis between variables")
|
133 |
+
|
134 |
+
with gr.Row():
|
135 |
+
correlation_plot = get_correlation_map(markets_data)
|
136 |
+
|
137 |
demo.queue(default_concurrency_limit=40).launch()
|
notebooks/analysis_of_markets_data.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tabs/dist_gap.py
CHANGED
@@ -6,7 +6,7 @@ from seaborn import FacetGrid
|
|
6 |
import plotly.express as px
|
7 |
|
8 |
|
9 |
-
def
|
10 |
"""Function to paint the top markets with the lowest metric of distribution gap"""
|
11 |
sorted_data = markets_data.sort_values(by="dist_gap_perc", ascending=False)
|
12 |
top_best_markets = sorted_data[["title", "sample_datetime", "dist_gap_perc"]].head(
|
@@ -17,8 +17,56 @@ def plot_top_best_behaviour_markets(markets_data: pd.DataFrame):
|
|
17 |
|
18 |
def get_distribution_plot(markets_data: pd.DataFrame):
|
19 |
"""Function to paint the density plot of the metric distribution gap percentage"""
|
|
|
|
|
|
|
|
|
20 |
plt.figure(figsize=(25, 10))
|
|
|
21 |
plot = sns.kdeplot(markets_data, x="dist_gap_perc", fill=True)
|
22 |
# TODO Add title and labels
|
23 |
# Display the plot using gr.Plot
|
24 |
return gr.Plot(value=plot.get_figure())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import plotly.express as px
|
7 |
|
8 |
|
9 |
+
def get_top_best_behaviour_markets(markets_data: pd.DataFrame):
|
10 |
"""Function to paint the top markets with the lowest metric of distribution gap"""
|
11 |
sorted_data = markets_data.sort_values(by="dist_gap_perc", ascending=False)
|
12 |
top_best_markets = sorted_data[["title", "sample_datetime", "dist_gap_perc"]].head(
|
|
|
17 |
|
18 |
def get_distribution_plot(markets_data: pd.DataFrame):
|
19 |
"""Function to paint the density plot of the metric distribution gap percentage"""
|
20 |
+
# A kernel density estimate (KDE) plot is a method for visualizing the distribution of
|
21 |
+
# observations in a dataset, analogous to a histogram. KDE represents the data using a
|
22 |
+
# continuous probability density curve in one or more dimensions.
|
23 |
+
sns.set_theme(palette="viridis")
|
24 |
plt.figure(figsize=(25, 10))
|
25 |
+
|
26 |
plot = sns.kdeplot(markets_data, x="dist_gap_perc", fill=True)
|
27 |
# TODO Add title and labels
|
28 |
# Display the plot using gr.Plot
|
29 |
return gr.Plot(value=plot.get_figure())
|
30 |
+
|
31 |
+
|
32 |
+
def get_kde_with_trades(markets_data: pd.DataFrame):
|
33 |
+
"""Function to paint the density plot of the metric in terms of the number of trades"""
|
34 |
+
plot = sns.kdeplot(markets_data, x="dist_gap_perc", y="total_trades", fill=True)
|
35 |
+
|
36 |
+
return gr.Plot(value=plot.get_figure())
|
37 |
+
|
38 |
+
|
39 |
+
def get_correlation_map(markets_data: pd.DataFrame):
|
40 |
+
"""Function to paint the correlation between different variables"""
|
41 |
+
|
42 |
+
columns_of_interest = ["total_trades", "dist_gap_perc", "days_to_resolution"]
|
43 |
+
data = markets_data[columns_of_interest]
|
44 |
+
|
45 |
+
# Compute the correlation matrix
|
46 |
+
correlation_matrix = data.corr()
|
47 |
+
|
48 |
+
# Create a figure and axis
|
49 |
+
plt.figure(figsize=(10, 8))
|
50 |
+
|
51 |
+
# Create the heatmap
|
52 |
+
heatmap = sns.heatmap(
|
53 |
+
correlation_matrix,
|
54 |
+
annot=True, # Show the correlation values
|
55 |
+
cmap="coolwarm", # Color scheme
|
56 |
+
vmin=-1,
|
57 |
+
vmax=1, # Set the range of values
|
58 |
+
center=0, # Center the colormap at 0
|
59 |
+
square=True, # Make each cell square-shaped
|
60 |
+
linewidths=0.5, # Add lines between cells
|
61 |
+
cbar_kws={"shrink": 0.8},
|
62 |
+
) # Adjust the size of the colorbar
|
63 |
+
|
64 |
+
# Set the title
|
65 |
+
plt.title("Correlation Heatmap", fontsize=)
|
66 |
+
|
67 |
+
# Rotate the y-axis labels for better readability
|
68 |
+
plt.yticks(rotation=0)
|
69 |
+
|
70 |
+
# Show the plot
|
71 |
+
plt.tight_layout()
|
72 |
+
return gr.Plot(value=heatmap.get_figure())
|
tabs/tokens_votes_dist.py
CHANGED
@@ -9,7 +9,6 @@ import plotly.express as px
|
|
9 |
def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
|
10 |
"""Function to paint the evolution of the probability of the outcomes based on the tokens distributions over time"""
|
11 |
sns.set_style("darkgrid")
|
12 |
-
sns.set_theme(palette="viridis")
|
13 |
selected_market = all_markets.loc[all_markets["id"] == market_id]
|
14 |
ax = selected_market.plot(
|
15 |
x="sample_datetime",
|
@@ -19,9 +18,9 @@ def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
|
|
19 |
stacked=True,
|
20 |
)
|
21 |
# add overall title
|
22 |
-
plt.title(
|
23 |
-
|
24 |
-
)
|
25 |
|
26 |
# add axis titles
|
27 |
plt.xlabel("Sample date")
|
@@ -32,13 +31,13 @@ def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
|
|
32 |
loc="upper left",
|
33 |
labels=[first_outcome, second_outcome],
|
34 |
)
|
|
|
35 |
return gr.Plot(value=ax.figure)
|
36 |
|
37 |
|
38 |
def get_based_votes_distribution(market_id: str, all_markets: pd.DataFrame):
|
39 |
"""Function to paint the evolution of the probability of the outcomes based on the votes distributions over time"""
|
40 |
sns.set_style("darkgrid")
|
41 |
-
sns.set_theme(palette="viridis")
|
42 |
selected_market = all_markets.loc[all_markets["id"] == market_id]
|
43 |
ax = selected_market.plot(
|
44 |
x="sample_datetime",
|
@@ -47,9 +46,8 @@ def get_based_votes_distribution(market_id: str, all_markets: pd.DataFrame):
|
|
47 |
rot=0,
|
48 |
stacked=True,
|
49 |
)
|
50 |
-
plt.figure(figsize=(25, 10))
|
51 |
# add overall title
|
52 |
-
plt.title("Outcomes probability over time based on votes distributions", fontsize=8)
|
53 |
|
54 |
# add axis titles
|
55 |
plt.xlabel("Sample date")
|
@@ -60,4 +58,5 @@ def get_based_votes_distribution(market_id: str, all_markets: pd.DataFrame):
|
|
60 |
loc="upper left",
|
61 |
labels=[first_outcome, second_outcome],
|
62 |
)
|
|
|
63 |
return gr.Plot(value=ax.figure)
|
|
|
9 |
def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
|
10 |
"""Function to paint the evolution of the probability of the outcomes based on the tokens distributions over time"""
|
11 |
sns.set_style("darkgrid")
|
|
|
12 |
selected_market = all_markets.loc[all_markets["id"] == market_id]
|
13 |
ax = selected_market.plot(
|
14 |
x="sample_datetime",
|
|
|
18 |
stacked=True,
|
19 |
)
|
20 |
# add overall title
|
21 |
+
# plt.title(
|
22 |
+
# "Outcomes probability over time based on tokens distributions", fontsize=8
|
23 |
+
# )
|
24 |
|
25 |
# add axis titles
|
26 |
plt.xlabel("Sample date")
|
|
|
31 |
loc="upper left",
|
32 |
labels=[first_outcome, second_outcome],
|
33 |
)
|
34 |
+
ax.title = "Outcomes probability over time based on tokens distributions"
|
35 |
return gr.Plot(value=ax.figure)
|
36 |
|
37 |
|
38 |
def get_based_votes_distribution(market_id: str, all_markets: pd.DataFrame):
|
39 |
"""Function to paint the evolution of the probability of the outcomes based on the votes distributions over time"""
|
40 |
sns.set_style("darkgrid")
|
|
|
41 |
selected_market = all_markets.loc[all_markets["id"] == market_id]
|
42 |
ax = selected_market.plot(
|
43 |
x="sample_datetime",
|
|
|
46 |
rot=0,
|
47 |
stacked=True,
|
48 |
)
|
|
|
49 |
# add overall title
|
50 |
+
# plt.title("Outcomes probability over time based on votes distributions", fontsize=8)
|
51 |
|
52 |
# add axis titles
|
53 |
plt.xlabel("Sample date")
|
|
|
58 |
loc="upper left",
|
59 |
labels=[first_outcome, second_outcome],
|
60 |
)
|
61 |
+
ax.title = "Outcomes probability over time based on votes distributions"
|
62 |
return gr.Plot(value=ax.figure)
|