File size: 11,788 Bytes
18ab870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Timestamp('2024-11-23 01:38:25+0000', tz='UTC')"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "max(all_trades.creation_timestamp)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Timestamp('2024-09-22 00:02:05+0000', tz='UTC')"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "min(all_trades.creation_timestamp)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "new_trades = pd.read_parquet('../data/new_fpmmTrades.parquet')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 3798 entries, 0 to 3797\n",
      "Data columns (total 24 columns):\n",
      " #   Column                         Non-Null Count  Dtype \n",
      "---  ------                         --------------  ----- \n",
      " 0   collateralAmount               3798 non-null   object\n",
      " 1   collateralAmountUSD            3798 non-null   object\n",
      " 2   collateralToken                3798 non-null   object\n",
      " 3   creationTimestamp              3798 non-null   object\n",
      " 4   trader_address                 3798 non-null   object\n",
      " 5   feeAmount                      3798 non-null   object\n",
      " 6   id                             3798 non-null   object\n",
      " 7   oldOutcomeTokenMarginalPrice   3798 non-null   object\n",
      " 8   outcomeIndex                   3798 non-null   object\n",
      " 9   outcomeTokenMarginalPrice      3798 non-null   object\n",
      " 10  outcomeTokensTraded            3798 non-null   object\n",
      " 11  title                          3798 non-null   object\n",
      " 12  transactionHash                3798 non-null   object\n",
      " 13  type                           3798 non-null   object\n",
      " 14  market_creator                 3798 non-null   object\n",
      " 15  fpmm.answerFinalizedTimestamp  0 non-null      object\n",
      " 16  fpmm.arbitrationOccurred       3798 non-null   bool  \n",
      " 17  fpmm.currentAnswer             0 non-null      object\n",
      " 18  fpmm.id                        3798 non-null   object\n",
      " 19  fpmm.isPendingArbitration      3798 non-null   bool  \n",
      " 20  fpmm.openingTimestamp          3798 non-null   object\n",
      " 21  fpmm.outcomes                  3798 non-null   object\n",
      " 22  fpmm.title                     3798 non-null   object\n",
      " 23  fpmm.condition.id              3798 non-null   object\n",
      "dtypes: bool(2), object(22)\n",
      "memory usage: 660.3+ KB\n"
     ]
    }
   ],
   "source": [
    "new_trades.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3798"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(new_trades.id.unique())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['collateralAmount', 'collateralAmountUSD', 'collateralToken',\n",
       "       'creationTimestamp', 'trader_address', 'feeAmount', 'id',\n",
       "       'oldOutcomeTokenMarginalPrice', 'outcomeIndex',\n",
       "       'outcomeTokenMarginalPrice', 'outcomeTokensTraded', 'title',\n",
       "       'transactionHash', 'type', 'market_creator',\n",
       "       'fpmm.answerFinalizedTimestamp', 'fpmm.arbitrationOccurred',\n",
       "       'fpmm.currentAnswer', 'fpmm.id', 'fpmm.isPendingArbitration',\n",
       "       'fpmm.openingTimestamp', 'fpmm.outcomes', 'fpmm.title',\n",
       "       'fpmm.condition.id'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_trades.columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'1732609530'"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "max(new_trades.creationTimestamp)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "old_trades = pd.read_parquet('../data/fpmmTrades.parquet')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'1732609530'"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "max(old_trades.creationTimestamp)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_trades_before = pd.read_parquet('../data/daily_info.parquet')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 3882 entries, 0 to 3881\n",
      "Data columns (total 21 columns):\n",
      " #   Column                  Non-Null Count  Dtype              \n",
      "---  ------                  --------------  -----              \n",
      " 0   trader_address          3882 non-null   object             \n",
      " 1   market_creator          3882 non-null   object             \n",
      " 2   trade_id                3882 non-null   object             \n",
      " 3   creation_timestamp      3882 non-null   datetime64[ns, UTC]\n",
      " 4   title                   3882 non-null   object             \n",
      " 5   market_status           3882 non-null   object             \n",
      " 6   collateral_amount       3882 non-null   float64            \n",
      " 7   outcome_index           3882 non-null   object             \n",
      " 8   trade_fee_amount        3882 non-null   float64            \n",
      " 9   outcomes_tokens_traded  3882 non-null   float64            \n",
      " 10  current_answer          0 non-null      object             \n",
      " 11  is_invalid              3882 non-null   bool               \n",
      " 12  winning_trade           0 non-null      object             \n",
      " 13  earnings                3882 non-null   float64            \n",
      " 14  redeemed                3882 non-null   bool               \n",
      " 15  redeemed_amount         3882 non-null   int64              \n",
      " 16  num_mech_calls          3882 non-null   int64              \n",
      " 17  mech_fee_amount         3882 non-null   float64            \n",
      " 18  net_earnings            3882 non-null   float64            \n",
      " 19  roi                     3882 non-null   float64            \n",
      " 20  staking                 3882 non-null   object             \n",
      "dtypes: bool(2), datetime64[ns, UTC](1), float64(7), int64(2), object(9)\n",
      "memory usage: 583.9+ KB\n"
     ]
    }
   ],
   "source": [
    "all_trades_before.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['trader_address', 'market_creator', 'trade_id', 'creation_timestamp',\n",
       "       'title', 'market_status', 'collateral_amount', 'outcome_index',\n",
       "       'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
       "       'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
       "       'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
       "       'roi', 'staking'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "all_trades_before.columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Timestamp('2024-11-26 10:19:30+0000', tz='UTC')"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "max(all_trades_before.creation_timestamp)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "staking\n",
       "non_agent      2376\n",
       "quickstart      672\n",
       "pearl           502\n",
       "non_staking     332\n",
       "Name: count, dtype: int64"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "all_trades_before.staking.value_counts()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_trades_df = pd.read_parquet('../json_data/all_trades_df.parquet')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['trader_address', 'market_creator', 'trade_id', 'creation_timestamp',\n",
       "       'title', 'market_status', 'collateral_amount', 'outcome_index',\n",
       "       'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
       "       'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
       "       'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
       "       'roi', 'staking', 'nr_mech_calls'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "all_trades_df.columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Timestamp('2024-11-23 01:38:25+0000', tz='UTC')"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "max(all_trades_df.creation_timestamp)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "hf_dashboards",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}