File size: 11,151 Bytes
d8cf478
 
 
 
 
 
 
 
 
 
efabdf9
d8cf478
 
 
 
52d1750
d8cf478
dc11fb3
d8cf478
 
 
 
 
 
 
 
 
dc11fb3
 
330cbe3
 
 
 
 
 
 
 
 
 
 
 
 
dc11fb3
 
 
 
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efabdf9
 
 
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efabdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc98cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41146f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6154c13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db08a72
 
6154c13
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import gradio as gr
import pandas as pd
import plotly.express as px

trader_metric_choices = [
    "mech calls",
    "bet amount",
    "earnings",
    "net earnings",
    "ROI",
    "nr_trades",
]
default_trader_metric = "ROI"


def get_metrics_text() -> gr.Markdown:
    metric_text = """ 
        ## Metrics at the graph
        These metrics are computed weekly. The statistical measures are:
        * min, max, 25th(q1), 50th(median) and 75th(q2) percentiles
        * the upper and lower fences to delimit possible outliers
        * the average values as the dotted lines
        """

    return gr.Markdown(metric_text)


def get_interpretation_text() -> gr.Markdown:
    interpretation_text = """
        ## Meaning of KL-divergence values
            * Y = 0.05129
                * Market accuracy off by 5%
            * Y = 0.1053
                * Market accuracy off by 10%
            * Y = 0.2876
                * Market accuracy off by 25%
            * Y = 0.5108
                * Market accuracy off by 40%
            * Y = 1.2040
                * Market accuracy off by 70%
            * Y = 2.3026
                * Market accuracy off by 90%
    """
    return gr.Markdown(interpretation_text)


def plot_trader_metrics_by_market_creator(
    metric_name: str, traders_df: pd.DataFrame
) -> gr.Plot:
    """Plots the weekly trader metrics."""

    if metric_name == "mech calls":
        metric_name = "mech_calls"
        column_name = "nr_mech_calls"
        yaxis_title = "Total nr of mech calls per trader"
    elif metric_name == "ROI":
        column_name = "roi"
        yaxis_title = "Total ROI (net profit/cost)"
    elif metric_name == "bet amount":
        metric_name = "bet_amount"
        column_name = metric_name
        yaxis_title = "Total bet amount per trader (xDAI)"
    elif metric_name == "net earnings":
        metric_name = "net_earnings"
        column_name = metric_name
        yaxis_title = "Total net profit per trader (xDAI)"
    elif metric_name == "nr_trades":
        column_name = metric_name
        yaxis_title = "Total nr of trades per trader"
    else:  # earnings
        column_name = metric_name
        yaxis_title = "Total gross profit per trader (xDAI)"

    traders_filtered = traders_df[["month_year_week", "market_creator", column_name]]

    fig = px.box(
        traders_filtered,
        x="month_year_week",
        y=column_name,
        color="market_creator",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_traces(boxmean=True)
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title=yaxis_title,
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")

    return gr.Plot(
        value=fig,
    )


def plot_trader_daily_metrics_by_market_creator(
    metric_name: str, traders_df: pd.DataFrame
) -> gr.Plot:
    """Plots the daily trader metrics."""

    if metric_name == "mech calls":
        metric_name = "mech_calls"
        column_name = "nr_mech_calls"
        yaxis_title = "Total nr of mech calls per trader"
    elif metric_name == "ROI":
        column_name = "roi"
        yaxis_title = "Total ROI (net profit/cost)"
    elif metric_name == "bet amount":
        metric_name = "bet_amount"
        column_name = metric_name
        yaxis_title = "Total bet amount per trader (xDAI)"
    elif metric_name == "net earnings":
        metric_name = "net_earnings"
        column_name = metric_name
        yaxis_title = "Total net profit per trader (xDAI)"
    elif metric_name == "nr_trades":
        column_name = metric_name
        yaxis_title = "Total nr of trades per trader"
    else:  # earnings
        column_name = metric_name
        yaxis_title = "Total gross profit per trader (xDAI)"

    traders_filtered = traders_df[["creation_date", "market_creator", column_name]]

    fig = px.box(
        traders_filtered,
        x="creation_date",
        y=column_name,
        color="market_creator",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_traces(boxmean=True)
    fig.update_layout(
        xaxis_title="Day",
        yaxis_title=yaxis_title,
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")

    return gr.Plot(
        value=fig,
    )


def plot_median_roi_by_creation_date(traders_df: pd.DataFrame) -> gr.Plot:
    traders_df["creation_date"] = traders_df["creation_timestamp"].dt.date

    traders_all = traders_df.copy(deep=True)
    traders_all["market_creator"] = "all"

    # merging both dataframes
    final_traders = pd.concat([traders_all, traders_df], ignore_index=True)
    final_traders = final_traders.sort_values(by="creation_date", ascending=True)
    roi_daily_metrics = (
        final_traders.groupby(
            ["creation_date", "market_creator", "trader_address"], sort=False
        )
        .agg(
            median_roi=("roi", "median"),
            mean_roi=("roi", "mean"),
            total_trades=("roi", "count"),
        )
        .reset_index()
    )
    # Create the scatter plot with facets for each market_creator
    fig = px.scatter(
        roi_daily_metrics,
        x="creation_date",
        y="median_roi",
        facet_col="market_creator",
        color="market_creator",
        color_discrete_map={
            "pearl": "purple",
            "quickstart": "goldenrod",
            "all": "darkgreen",
        },
        title="Median ROI Over Time by Market Creator",
        labels={
            "creation_date": "Creation Date",
            "median_roi": "Median ROI (%)",
            "market_creator": "Market Creator",
        },
        hover_data={
            "creation_date": "|%B %d, %Y",  # Custom date format in hover
            "median_roi": True,
            "mean_roi": True,
            "total_trades": True,
        },
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
        # trendline=None,  # Ensure no trendlines are added
    )

    # Customize the layout for better aesthetics
    fig.update_layout(
        template="plotly_white",
        hovermode="closest",
        showlegend=False,  # Disable the legend as each facet has its own context
    )

    # Update each subplot's x-axis to share the same range
    fig.update_xaxes(matches="x")  # Link x-axes across facets
    fig.update_yaxes(matches="y")  # Link y-axes across facets

    # Add a vertical dashed line in dark red at the specified date
    vline_date = "2024-09-29"
    vline_datetime = pd.to_datetime(vline_date, format="%Y-%m-%d")
    fig.add_vline(
        x=vline_datetime,
        line_dash="dash",
        line_color="darkred",
    )
    return gr.Plot(
        value=fig,
    )


import plotly.express as px


def create_median_roi_plot(roi_daily_metrics):
    """
    Creates a Plotly scatter plot for median ROI over time, colored by market_creator.

    Parameters:
    - roi_daily_metrics (pd.DataFrame): Aggregated ROI metrics with columns:
        ['creation_date', 'market_creator', 'trader_address', 'median_roi', 'mean_roi', 'total_trades']

    Returns:
    - fig (plotly.graph_objs._figure.Figure): The Plotly figure object.
    """
    # Ensure 'creation_date' is in datetime format
    roi_daily_metrics["creation_date"] = pd.to_datetime(
        roi_daily_metrics["creation_date"]
    )

    # Create the line plot with scatter markers
    fig = px.line(
        roi_daily_metrics,
        x="creation_date",
        y="median_roi",
        color="market_creator",
        markers=True,  # Add markers to lines
        title="Median ROI Over Time by Market Creator",
        labels={
            "creation_date": "Creation Date",
            "median_roi": "Median ROI (%)",
            "market_creator": "Market Creator",
        },
        hover_data={
            "creation_date": "|%B %d, %Y",  # Custom date format in hover
            "median_roi": True,
            "mean_roi": True,
            "total_trades": True,
        },
    )

    # Customize the layout for better aesthetics
    fig.update_layout(
        xaxis_title="Creation Date",
        yaxis_title="Median ROI (%)",
        legend_title="Market Creator",
        template="plotly_white",
        hovermode="x unified",
    )

    # Optional: Add vertical lines for specific events (e.g., "multibet release")
    # Example:
    # fig.add_vline(
    #     x=pd.to_datetime("2023-01-02"),
    #     line_dash="dash",
    #     line_color="red",
    #     annotation_text="Multibet Release",
    #     annotation_position="top left",
    #     annotation=dict(
    #         bgcolor="white",
    #         font_size=12,
    #         font_color="red"
    #     )
    # )

    return fig


def plot_trader_metrics_by_trader_type(metric_name: str, traders_df: pd.DataFrame):
    """Plots the weekly trader metrics."""

    if metric_name == "mech calls":
        metric_name = "mech_calls"
        column_name = "nr_mech_calls"
        yaxis_title = "Total nr of mech calls per trader"
    elif metric_name == "ROI":
        column_name = "roi"
        yaxis_title = "Total ROI (net profit/cost)"
    elif metric_name == "bet amount":
        metric_name = "bet_amount"
        column_name = metric_name
        yaxis_title = "Total bet amount per trader (xDAI)"
    elif metric_name == "net earnings":
        metric_name = "net_earnings"
        column_name = metric_name
        yaxis_title = "Total net profit per trader (xDAI)"
    else:  # earnings
        column_name = metric_name
        yaxis_title = "Total gross profit per trader (xDAI)"

    traders_filtered = traders_df[["month_year_week", "trader_type", column_name]]

    fig = px.box(
        traders_filtered,
        x="month_year_week",
        y=column_name,
        color="trader_type",
        color_discrete_sequence=["gray", "orange", "darkblue"],
        category_orders={"trader_type": ["singlebet", "multibet", "all"]},
    )
    fig.update_traces(boxmean=True)
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title=yaxis_title,
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")

    return gr.Plot(
        value=fig,
    )


def plot_winning_metric_per_trader(traders_winning_df: pd.DataFrame) -> gr.Plot:
    fig = px.box(
        traders_winning_df,
        x="month_year_week",
        y="winning_perc",
        color="market_creator",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_traces(boxmean=True)
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly winning percentage %",
        legend=dict(yanchor="top", y=0.5),
        width=1000,  # Adjusted for better fit on laptop screens
        height=600,  # Adjusted for better fit on laptop screens
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")

    return gr.Plot(
        value=fig,
    )