File size: 7,277 Bytes
3ed8c7a
 
 
 
1ed82ec
3ed8c7a
 
 
18ab870
1ed82ec
 
 
3ed8c7a
 
 
 
1ed82ec
3ed8c7a
 
 
 
 
 
1ed82ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed8c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18ab870
3ed8c7a
18ab870
3ed8c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18ab870
3ed8c7a
18ab870
3ed8c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "# import sys\n",
    "# sys.path.append('..')\n",
    "# from scripts.metrics import compute_weekly_metrics_by_market_creator"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['trader_address', 'market_creator', 'trade_id', 'creation_timestamp',\n",
       "       'title', 'market_status', 'collateral_amount', 'outcome_index',\n",
       "       'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
       "       'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
       "       'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
       "       'roi', 'staking', 'nr_mech_calls'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "all_trades.columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "def compute_winning_metric_per_trader_per_market_creator(\n",
    "    trader_address: str, week_traders_data: pd.DataFrame, market_creator: str = \"all\"\n",
    ") -> float:\n",
    "    assert \"market_creator\" in week_traders_data.columns\n",
    "    filtered_traders_data = week_traders_data.loc[\n",
    "        week_traders_data[\"trader_address\"] == trader_address\n",
    "    ]\n",
    "    if market_creator != \"all\":  # compute only for the specific market creator\n",
    "        filtered_traders_data = filtered_traders_data.loc[\n",
    "            filtered_traders_data[\"market_creator\"] == market_creator\n",
    "        ]\n",
    "        if len(filtered_traders_data) == 0:\n",
    "            return None  # No Data\n",
    "    winning_perc = (\n",
    "        filtered_traders_data[\"winning_trade\"].sum()\n",
    "        / filtered_traders_data[\"winning_trade\"].count()\n",
    "        * 100.0\n",
    "    )\n",
    "    return winning_perc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def merge_winning_metrics_by_trader(\n",
    "    trader: str, weekly_data: pd.DataFrame, week: str\n",
    ") -> pd.DataFrame:\n",
    "    trader_metrics = []\n",
    "    # computation as specification 1 for all market creators\n",
    "    winning_metrics_all = {}\n",
    "    winning_metric_all = compute_winning_metric_per_trader_per_market_creator(\n",
    "        trader, weekly_data, market_creator=\"all\"\n",
    "    )\n",
    "    winning_metrics_all[\"winning_perc\"] = winning_metric_all\n",
    "    winning_metrics_all[\"month_year_week\"] = week\n",
    "    winning_metrics_all[\"market_creator\"] = \"all\"\n",
    "    trader_metrics.append(winning_metrics_all)\n",
    "    if week == \"Jul-21\":\n",
    "        print(f\"trader = {trader}, win_perc for all ={winning_metric_all}\")\n",
    "\n",
    "    # computation as specification 1 for quickstart markets\n",
    "    winning_metrics_qs = {}\n",
    "    winning_metric = compute_winning_metric_per_trader_per_market_creator(\n",
    "        trader, weekly_data, market_creator=\"quickstart\"\n",
    "    )\n",
    "    if winning_metric:\n",
    "        winning_metrics_qs[\"winning_perc\"] = winning_metric\n",
    "        winning_metrics_qs[\"month_year_week\"] = week\n",
    "        winning_metrics_qs[\"market_creator\"] = \"quickstart\"\n",
    "        trader_metrics.append(winning_metrics_qs)\n",
    "\n",
    "    # computation as specification 1 for pearl markets\n",
    "    winning_metrics_pearl = {}\n",
    "    winning_metric = compute_winning_metric_per_trader_per_market_creator(\n",
    "        trader, weekly_data, market_creator=\"pearl\"\n",
    "    )\n",
    "    if winning_metric:\n",
    "        winning_metrics_pearl[\"winning_perc\"] = winning_metric\n",
    "        winning_metrics_pearl[\"month_year_week\"] = week\n",
    "        winning_metrics_pearl[\"market_creator\"] = \"pearl\"\n",
    "        trader_metrics.append(winning_metrics_pearl)\n",
    "\n",
    "    result = pd.DataFrame.from_dict(trader_metrics, orient=\"columns\")\n",
    "    # tqdm.write(f\"Total length of all winning metrics for this week = {len(result)}\")\n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
   "source": [
    "def win_metrics_trader_level(weekly_data):\n",
    "    winning_trades = (\n",
    "        weekly_data.groupby([\"month_year_week\", \"market_creator\",\"trader_address\"], sort=False)[\n",
    "            \"winning_trade\"\n",
    "        ].sum()\n",
    "        / weekly_data.groupby([\"month_year_week\", \"market_creator\",\"trader_address\"], sort=False)[\n",
    "            \"winning_trade\"\n",
    "        ].count()\n",
    "        * 100\n",
    "    )\n",
    "    # winning_trades is a series, give it a dataframe\n",
    "    winning_trades = winning_trades.reset_index()\n",
    "    winning_trades.columns = winning_trades.columns.astype(str)\n",
    "    winning_trades.columns = [\"month_year_week\", \"market_creator\", \"trader_address\", \"winning_trade\"]\n",
    "    winning_trades.rename(columns={\"winning_trade\": \"winning_perc\"})\n",
    "    return winning_trades"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from tqdm import tqdm\n",
    "\n",
    "market_all = all_trades.copy(deep=True)\n",
    "market_all[\"market_creator\"] = \"all\"\n",
    "\n",
    "# merging both dataframes\n",
    "final_traders = pd.concat([market_all, all_trades], ignore_index=True)\n",
    "final_traders = final_traders.sort_values(\n",
    "        by=\"creation_timestamp\", ascending=True)\n",
    "\n",
    "\n",
    "winning_df = win_metrics_trader_level(final_traders)\n",
    "winning_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "winning_df = compute_winning_metrics_by_trader(all_trades)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "winning_pearl = winning_df.loc[winning_df[\"market_creator\"]==\"pearl\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "winning_pearl.head()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "hf_dashboards",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}