|
import gradio as gr |
|
import pandas as pd |
|
import duckdb |
|
import logging |
|
|
|
|
|
from scripts.metrics import ( |
|
compute_weekly_metrics_by_market_creator, |
|
compute_daily_metrics_by_market_creator, |
|
compute_winning_metrics_by_trader, |
|
) |
|
from tabs.trader_plots import ( |
|
plot_trader_metrics_by_market_creator, |
|
plot_trader_daily_metrics_by_market_creator, |
|
default_trader_metric, |
|
trader_metric_choices, |
|
get_metrics_text, |
|
plot_winning_metric_per_trader, |
|
get_interpretation_text, |
|
plot_total_bet_amount, |
|
) |
|
from tabs.daily_graphs import ( |
|
get_current_week_data, |
|
plot_daily_metrics, |
|
trader_daily_metric_choices, |
|
default_daily_metric, |
|
) |
|
from scripts.utils import get_traders_family |
|
from tabs.market_plots import ( |
|
plot_kl_div_per_market, |
|
plot_total_bet_amount_per_trader_per_market, |
|
) |
|
|
|
|
|
def get_logger(): |
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.DEBUG) |
|
|
|
stream_handler = logging.StreamHandler() |
|
stream_handler.setLevel(logging.DEBUG) |
|
formatter = logging.Formatter( |
|
"%(asctime)s - %(name)s - %(levelname)s - %(message)s" |
|
) |
|
stream_handler.setFormatter(formatter) |
|
logger.addHandler(stream_handler) |
|
return logger |
|
|
|
|
|
logger = get_logger() |
|
|
|
|
|
def get_all_data(): |
|
""" |
|
Get parquet files from weekly stats and new generated |
|
""" |
|
logger.info("Getting traders data") |
|
con = duckdb.connect(":memory:") |
|
|
|
query1 = f""" |
|
SELECT * |
|
FROM read_parquet('./data/all_trades_profitability.parquet') |
|
""" |
|
df1 = con.execute(query1).fetchdf() |
|
logger.info("Got all data from all_trades_profitability.parquet") |
|
|
|
|
|
query2 = f""" |
|
SELECT * |
|
FROM read_parquet('./data/closed_markets_div.parquet') |
|
""" |
|
df2 = con.execute(query2).fetchdf() |
|
logger.info("Got all data from closed_markets_div.parquet") |
|
|
|
|
|
query3 = f""" |
|
SELECT * |
|
FROM read_parquet('./data/daily_info.parquet') |
|
""" |
|
df3 = con.execute(query3).fetchdf() |
|
con.close() |
|
|
|
return df1, df2, df3 |
|
|
|
|
|
def prepare_data(): |
|
|
|
all_trades, closed_markets, daily_info = get_all_data() |
|
|
|
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date |
|
|
|
|
|
volume_trades_per_trader_and_market = ( |
|
all_trades.groupby(["trader_address", "title"])["roi"] |
|
.count() |
|
.reset_index(name="nr_trades_per_market") |
|
) |
|
|
|
trader_agents_data = pd.merge( |
|
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"] |
|
) |
|
daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date |
|
|
|
trader_agents_data["trader_family"] = trader_agents_data.apply( |
|
lambda x: get_traders_family(x), axis=1 |
|
) |
|
print(trader_agents_data.head()) |
|
|
|
trader_agents_data = trader_agents_data.sort_values( |
|
by="creation_timestamp", ascending=True |
|
) |
|
|
|
trader_agents_data["month_year_week"] = ( |
|
trader_agents_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d") |
|
) |
|
|
|
closed_markets["month_year_week"] = ( |
|
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d") |
|
) |
|
return trader_agents_data, closed_markets, daily_info |
|
|
|
|
|
trader_agents_data, closed_markets, daily_info = prepare_data() |
|
|
|
demo = gr.Blocks() |
|
|
|
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator( |
|
trader_agents_data |
|
) |
|
|
|
weekly_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator( |
|
trader_agents_data, trader_filter="agent" |
|
) |
|
weekly_non_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator( |
|
trader_agents_data, trader_filter="non_agent" |
|
) |
|
|
|
weekly_winning_metrics = compute_winning_metrics_by_trader( |
|
trader_agents_data=trader_agents_data |
|
) |
|
weekly_agent_winning_metrics = compute_winning_metrics_by_trader( |
|
trader_agents_data=trader_agents_data, trader_filter="agent" |
|
) |
|
weekly_non_agent_winning_metrics = compute_winning_metrics_by_trader( |
|
trader_agents_data=trader_agents_data, trader_filter="non_agent" |
|
) |
|
|
|
with demo: |
|
gr.HTML("<h1>Trader agents monitoring dashboard </h1>") |
|
gr.Markdown( |
|
"This app shows the weekly performance of the trader agents in Olas Predict." |
|
) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("🔥 Weekly metrics"): |
|
with gr.Row(): |
|
gr.Markdown("# Weekly metrics of all traders") |
|
with gr.Row(): |
|
trader_details_selector = gr.Dropdown( |
|
label="Select a weekly trader metric", |
|
choices=trader_metric_choices, |
|
value=default_trader_metric, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
trader_markets_plot = plot_trader_metrics_by_market_creator( |
|
metric_name=default_trader_metric, |
|
traders_df=weekly_metrics_by_market_creator, |
|
) |
|
with gr.Column(scale=1): |
|
trade_details_text = get_metrics_text() |
|
|
|
def update_trader_details(trader_detail): |
|
return plot_trader_metrics_by_market_creator( |
|
metric_name=trader_detail, |
|
traders_df=weekly_metrics_by_market_creator, |
|
) |
|
|
|
trader_details_selector.change( |
|
update_trader_details, |
|
inputs=trader_details_selector, |
|
outputs=trader_markets_plot, |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("# Weekly metrics of trader Agents 🤖") |
|
with gr.Row(): |
|
trader_a_details_selector = gr.Dropdown( |
|
label="Select a weekly trader metric", |
|
choices=trader_metric_choices, |
|
value=default_trader_metric, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
a_trader_markets_plot = plot_trader_metrics_by_market_creator( |
|
metric_name=default_trader_metric, |
|
traders_df=weekly_agent_metrics_by_market_creator, |
|
) |
|
with gr.Column(scale=1): |
|
trade_details_text = get_metrics_text() |
|
|
|
def update_a_trader_details(trader_detail): |
|
return plot_trader_metrics_by_market_creator( |
|
metric_name=trader_detail, |
|
traders_df=weekly_agent_metrics_by_market_creator, |
|
) |
|
|
|
trader_a_details_selector.change( |
|
update_a_trader_details, |
|
inputs=trader_a_details_selector, |
|
outputs=a_trader_markets_plot, |
|
) |
|
|
|
|
|
with gr.Row(): |
|
gr.Markdown("# Weekly metrics of Non-agent traders") |
|
with gr.Row(): |
|
trader_na_details_selector = gr.Dropdown( |
|
label="Select a weekly trader metric", |
|
choices=trader_metric_choices, |
|
value=default_trader_metric, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
na_trader_markets_plot = plot_trader_metrics_by_market_creator( |
|
metric_name=default_trader_metric, |
|
traders_df=weekly_non_agent_metrics_by_market_creator, |
|
) |
|
with gr.Column(scale=1): |
|
trade_details_text = get_metrics_text() |
|
|
|
def update_na_trader_details(trader_detail): |
|
return plot_trader_metrics_by_market_creator( |
|
metric_name=trader_detail, |
|
traders_df=weekly_non_agent_metrics_by_market_creator, |
|
) |
|
|
|
trader_na_details_selector.change( |
|
update_na_trader_details, |
|
inputs=trader_na_details_selector, |
|
outputs=na_trader_markets_plot, |
|
) |
|
with gr.TabItem("📅 Daily metrics"): |
|
current_week_trades = get_current_week_data(trades_df=trader_agents_data) |
|
live_trades_current_week = get_current_week_data(trades_df=daily_info) |
|
if len(current_week_trades) > 0: |
|
daily_prof_metrics_by_market_creator = ( |
|
compute_daily_metrics_by_market_creator(current_week_trades) |
|
) |
|
else: |
|
print("No profitability info about the current week") |
|
daily_prof_metrics_by_market_creator = pd.DataFrame() |
|
live_metrics_by_market_creator = compute_daily_metrics_by_market_creator( |
|
live_trades_current_week, trader_filter=None, live_metrics=True |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("# Daily live metrics for all trades") |
|
with gr.Row(): |
|
trade_live_details_selector = gr.Dropdown( |
|
label="Select a daily live metric", |
|
choices=trader_daily_metric_choices, |
|
value=default_daily_metric, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
trade_live_details_plot = plot_daily_metrics( |
|
metric_name=default_daily_metric, |
|
trades_df=live_metrics_by_market_creator, |
|
) |
|
with gr.Column(scale=1): |
|
trade_details_text = get_metrics_text(daily=True) |
|
|
|
def update_trade_live_details(trade_detail, trade_live_details_plot): |
|
new_a_plot = plot_daily_metrics( |
|
metric_name=trade_detail, trades_df=live_metrics_by_market_creator |
|
) |
|
return new_a_plot |
|
|
|
trade_live_details_selector.change( |
|
update_trade_live_details, |
|
inputs=[trade_live_details_selector, trade_live_details_plot], |
|
outputs=[trade_live_details_plot], |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("# Daily live metrics for trader Agents 🤖") |
|
with gr.Row(): |
|
a_trader_live_details_selector = gr.Dropdown( |
|
label="Select a daily live metric", |
|
choices=trader_daily_metric_choices, |
|
value=default_daily_metric, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
a_trader_live_details_plot = plot_daily_metrics( |
|
metric_name=default_daily_metric, |
|
trades_df=live_metrics_by_market_creator, |
|
trader_filter="agent", |
|
) |
|
with gr.Column(scale=1): |
|
trade_details_text = get_metrics_text(daily=True) |
|
|
|
def update_a_trader_live_details(trade_detail, a_trader_live_details_plot): |
|
a_trader_plot = plot_daily_metrics( |
|
metric_name=trade_detail, |
|
trades_df=live_metrics_by_market_creator, |
|
trader_filter="agent", |
|
) |
|
return a_trader_plot |
|
|
|
a_trader_live_details_selector.change( |
|
update_a_trader_live_details, |
|
inputs=[a_trader_live_details_selector, a_trader_live_details_plot], |
|
outputs=[a_trader_live_details_plot], |
|
) |
|
with gr.Row(): |
|
gr.Markdown("# Daily live metrics for Non-agent traders") |
|
with gr.Row(): |
|
na_trader_live_details_selector = gr.Dropdown( |
|
label="Select a daily live metric", |
|
choices=trader_daily_metric_choices, |
|
value=default_daily_metric, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
na_trader_live_details_plot = plot_daily_metrics( |
|
metric_name=default_daily_metric, |
|
trades_df=live_metrics_by_market_creator, |
|
trader_filter="non_agent", |
|
) |
|
with gr.Column(scale=1): |
|
trade_details_text = get_metrics_text(daily=True) |
|
|
|
def update_na_trader_live_details( |
|
trade_detail, na_trader_live_details_plot |
|
): |
|
na_trader_plot = plot_daily_metrics( |
|
metric_name=trade_detail, |
|
trades_df=live_metrics_by_market_creator, |
|
trader_filter="non_agent", |
|
) |
|
return na_trader_plot |
|
|
|
na_trader_live_details_selector.change( |
|
update_na_trader_live_details, |
|
inputs=[na_trader_live_details_selector, na_trader_live_details_plot], |
|
outputs=[na_trader_live_details_plot], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.TabItem("📉 Markets Kullback–Leibler divergence"): |
|
with gr.Row(): |
|
gr.Markdown( |
|
"# Weekly Market Prediction Accuracy for Closed Markets (Kullback-Leibler Divergence)" |
|
) |
|
with gr.Row(): |
|
gr.Markdown( |
|
"Aka, how much off is the market prediction’s accuracy from the real outcome of the event. Values capped at 20 for market outcomes completely opposite to the real outcome." |
|
) |
|
with gr.Row(): |
|
trade_details_text = get_metrics_text() |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets) |
|
with gr.Column(scale=1): |
|
interpretation = get_interpretation_text() |
|
|
|
with gr.TabItem("💰 Money invested per trader type"): |
|
with gr.Row(): |
|
gr.Markdown("# Weekly total bet amount per trader type for all markets") |
|
with gr.Row(): |
|
total_bet_amount = plot_total_bet_amount( |
|
trader_agents_data, market_filter="all" |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown( |
|
"# Weekly total bet amount per trader type for Pearl markets" |
|
) |
|
with gr.Row(): |
|
a_trader_total_bet_amount = plot_total_bet_amount( |
|
trader_agents_data, market_filter="pearl" |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown( |
|
"# Weekly total bet amount per trader type for Quickstart markets" |
|
) |
|
with gr.Row(): |
|
na_trader_total_bet_amount = plot_total_bet_amount( |
|
trader_agents_data, market_filter="quickstart" |
|
) |
|
with gr.TabItem("💰 Money invested per market"): |
|
with gr.Row(): |
|
gr.Markdown("# Weekly bet amounts per market for all traders") |
|
with gr.Row(): |
|
bet_amounts = plot_total_bet_amount_per_trader_per_market( |
|
trader_agents_data |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("# Weekly bet amounts per market for traders Agents 🤖") |
|
with gr.Row(): |
|
a_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market( |
|
trader_agents_data, trader_filter="agent" |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("# Weekly bet amounts per market for Non-agent traders") |
|
with gr.Row(): |
|
na_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market( |
|
trader_agents_data, trader_filter="non_agent" |
|
) |
|
|
|
with gr.TabItem("🎖️Weekly winning trades % per trader"): |
|
with gr.Row(): |
|
gr.Markdown("# Weekly winning trades percentage from all traders") |
|
with gr.Row(): |
|
metrics_text = get_metrics_text() |
|
with gr.Row(): |
|
winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics) |
|
|
|
|
|
with gr.Row(): |
|
gr.Markdown("# Weekly winning trades percentage from traders Agents") |
|
with gr.Row(): |
|
metrics_text = get_metrics_text() |
|
with gr.Row(): |
|
winning_metric = plot_winning_metric_per_trader( |
|
weekly_agent_winning_metrics |
|
) |
|
|
|
|
|
with gr.Row(): |
|
gr.Markdown("# Weekly winning trades percentage from Non-agent traders") |
|
with gr.Row(): |
|
metrics_text = get_metrics_text() |
|
with gr.Row(): |
|
winning_metric = plot_winning_metric_per_trader( |
|
weekly_non_agent_winning_metrics |
|
) |
|
|
|
demo.queue(default_concurrency_limit=40).launch() |
|
|