cyberosa
updating money invested tab with other level of aggregation
00d49a3
raw
history blame
18.8 kB
import gradio as gr
import pandas as pd
import duckdb
import logging
from scripts.metrics import (
compute_weekly_metrics_by_market_creator,
compute_daily_metrics_by_market_creator,
compute_winning_metrics_by_trader,
)
from tabs.trader_plots import (
plot_trader_metrics_by_market_creator,
plot_trader_daily_metrics_by_market_creator,
default_trader_metric,
trader_metric_choices,
get_metrics_text,
plot_winning_metric_per_trader,
get_interpretation_text,
plot_total_bet_amount,
)
from tabs.daily_graphs import (
get_current_week_data,
plot_daily_metrics,
trader_daily_metric_choices,
default_daily_metric,
)
from scripts.utils import get_traders_family
from tabs.market_plots import (
plot_kl_div_per_market,
plot_total_bet_amount_per_trader_per_market,
)
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# stream handler and formatter
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
logger = get_logger()
def get_all_data():
"""
Get parquet files from weekly stats and new generated
"""
logger.info("Getting traders data")
con = duckdb.connect(":memory:")
# Query to fetch data from all_trades_profitability.parquet
query1 = f"""
SELECT *
FROM read_parquet('./data/all_trades_profitability.parquet')
"""
df1 = con.execute(query1).fetchdf()
logger.info("Got all data from all_trades_profitability.parquet")
# Query to fetch data from closed_markets_div.parquet
query2 = f"""
SELECT *
FROM read_parquet('./data/closed_markets_div.parquet')
"""
df2 = con.execute(query2).fetchdf()
logger.info("Got all data from closed_markets_div.parquet")
# Query to fetch daily live data
query3 = f"""
SELECT *
FROM read_parquet('./data/daily_info.parquet')
"""
df3 = con.execute(query3).fetchdf()
con.close()
return df1, df2, df3
def prepare_data():
all_trades, closed_markets, daily_info = get_all_data()
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
# nr-trades variable
volume_trades_per_trader_and_market = (
all_trades.groupby(["trader_address", "title"])["roi"]
.count()
.reset_index(name="nr_trades_per_market")
)
trader_agents_data = pd.merge(
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
)
daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date
# adding the trader family column
trader_agents_data["trader_family"] = trader_agents_data.apply(
lambda x: get_traders_family(x), axis=1
)
print(trader_agents_data.head())
trader_agents_data = trader_agents_data.sort_values(
by="creation_timestamp", ascending=True
)
trader_agents_data["month_year_week"] = (
trader_agents_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
)
closed_markets["month_year_week"] = (
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
)
return trader_agents_data, closed_markets, daily_info
trader_agents_data, closed_markets, daily_info = prepare_data()
demo = gr.Blocks()
# get weekly metrics by market creator: qs, pearl or all.
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
trader_agents_data
)
weekly_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
trader_agents_data, trader_filter="agent"
)
weekly_non_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
trader_agents_data, trader_filter="non_agent"
)
weekly_winning_metrics = compute_winning_metrics_by_trader(
trader_agents_data=trader_agents_data
)
weekly_agent_winning_metrics = compute_winning_metrics_by_trader(
trader_agents_data=trader_agents_data, trader_filter="agent"
)
weekly_non_agent_winning_metrics = compute_winning_metrics_by_trader(
trader_agents_data=trader_agents_data, trader_filter="non_agent"
)
with demo:
gr.HTML("<h1>Trader agents monitoring dashboard </h1>")
gr.Markdown(
"This app shows the weekly performance of the trader agents in Olas Predict."
)
with gr.Tabs():
with gr.TabItem("🔥 Weekly metrics"):
with gr.Row():
gr.Markdown("# Weekly metrics of all traders")
with gr.Row():
trader_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text()
def update_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_metrics_by_market_creator,
)
trader_details_selector.change(
update_trader_details,
inputs=trader_details_selector,
outputs=trader_markets_plot,
)
# Agentic traders graph
with gr.Row():
gr.Markdown("# Weekly metrics of trader Agents 🤖")
with gr.Row():
trader_a_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
a_trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_agent_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text()
def update_a_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_agent_metrics_by_market_creator,
)
trader_a_details_selector.change(
update_a_trader_details,
inputs=trader_a_details_selector,
outputs=a_trader_markets_plot,
)
# Non-agentic traders graph
with gr.Row():
gr.Markdown("# Weekly metrics of Non-agent traders")
with gr.Row():
trader_na_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
na_trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_non_agent_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text()
def update_na_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_non_agent_metrics_by_market_creator,
)
trader_na_details_selector.change(
update_na_trader_details,
inputs=trader_na_details_selector,
outputs=na_trader_markets_plot,
)
with gr.TabItem("📅 Daily metrics"):
current_week_trades = get_current_week_data(trades_df=trader_agents_data)
live_trades_current_week = get_current_week_data(trades_df=daily_info)
if len(current_week_trades) > 0:
daily_prof_metrics_by_market_creator = (
compute_daily_metrics_by_market_creator(current_week_trades)
)
else:
print("No profitability info about the current week")
daily_prof_metrics_by_market_creator = pd.DataFrame()
live_metrics_by_market_creator = compute_daily_metrics_by_market_creator(
live_trades_current_week, trader_filter=None, live_metrics=True
)
with gr.Row():
gr.Markdown("# Daily live metrics for all trades")
with gr.Row():
trade_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_trade_live_details(trade_detail, trade_live_details_plot):
new_a_plot = plot_daily_metrics(
metric_name=trade_detail, trades_df=live_metrics_by_market_creator
)
return new_a_plot
trade_live_details_selector.change(
update_trade_live_details,
inputs=[trade_live_details_selector, trade_live_details_plot],
outputs=[trade_live_details_plot],
)
with gr.Row():
gr.Markdown("# Daily live metrics for trader Agents 🤖")
with gr.Row():
a_trader_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
a_trader_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
trader_filter="agent",
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_a_trader_live_details(trade_detail, a_trader_live_details_plot):
a_trader_plot = plot_daily_metrics(
metric_name=trade_detail,
trades_df=live_metrics_by_market_creator,
trader_filter="agent",
)
return a_trader_plot
a_trader_live_details_selector.change(
update_a_trader_live_details,
inputs=[a_trader_live_details_selector, a_trader_live_details_plot],
outputs=[a_trader_live_details_plot],
)
with gr.Row():
gr.Markdown("# Daily live metrics for Non-agent traders")
with gr.Row():
na_trader_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
na_trader_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
trader_filter="non_agent",
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_na_trader_live_details(
trade_detail, na_trader_live_details_plot
):
na_trader_plot = plot_daily_metrics(
metric_name=trade_detail,
trades_df=live_metrics_by_market_creator,
trader_filter="non_agent",
)
return na_trader_plot
na_trader_live_details_selector.change(
update_na_trader_live_details,
inputs=[na_trader_live_details_selector, na_trader_live_details_plot],
outputs=[na_trader_live_details_plot],
)
# with gr.Row():
# gr.Markdown("# Daily profitability metrics available for all trades")
# if len(current_week_trades) > 0:
# with gr.Row():
# trader_daily_details_selector = gr.Dropdown(
# label="Select a daily trade metric",
# choices=trader_metric_choices,
# value=default_trader_metric,
# )
# with gr.Row():
# with gr.Column(scale=3):
# trader_daily_details_plot = plot_daily_metrics(
# metric_name=default_trader_metric,
# trades_df=daily_prof_metrics_by_market_creator,
# )
# with gr.Column(scale=1):
# trader_details_text = get_metrics_text(daily=True)
# def update_trader_daily_details(
# trade_detail, trader_daily_details_plot
# ):
# new_a_plot = plot_daily_metrics(
# metric_name=trade_detail,
# trades_df=daily_prof_metrics_by_market_creator,
# )
# return new_a_plot
# trader_daily_details_selector.change(
# update_trader_daily_details,
# inputs=[trader_daily_details_selector, trader_daily_details_plot],
# outputs=[trader_daily_details_plot],
# )
# else:
# gr.Markdown("Data not available yet")
with gr.TabItem("📉 Markets Kullback–Leibler divergence"):
with gr.Row():
gr.Markdown(
"# Weekly Market Prediction Accuracy for Closed Markets (Kullback-Leibler Divergence)"
)
with gr.Row():
gr.Markdown(
"Aka, how much off is the market prediction’s accuracy from the real outcome of the event. Values capped at 20 for market outcomes completely opposite to the real outcome."
)
with gr.Row():
trade_details_text = get_metrics_text()
with gr.Row():
with gr.Column(scale=3):
kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets)
with gr.Column(scale=1):
interpretation = get_interpretation_text()
with gr.TabItem("💰 Money invested per trader type"):
with gr.Row():
gr.Markdown("# Weekly total bet amount per trader type for all markets")
with gr.Row():
total_bet_amount = plot_total_bet_amount(
trader_agents_data, market_filter="all"
)
with gr.Row():
gr.Markdown(
"# Weekly total bet amount per trader type for Pearl markets"
)
with gr.Row():
a_trader_total_bet_amount = plot_total_bet_amount(
trader_agents_data, market_filter="pearl"
)
with gr.Row():
gr.Markdown(
"# Weekly total bet amount per trader type for Quickstart markets"
)
with gr.Row():
na_trader_total_bet_amount = plot_total_bet_amount(
trader_agents_data, market_filter="quickstart"
)
with gr.TabItem("💰 Money invested per market"):
with gr.Row():
gr.Markdown("# Weekly bet amounts per market for all traders")
with gr.Row():
bet_amounts = plot_total_bet_amount_per_trader_per_market(
trader_agents_data
)
with gr.Row():
gr.Markdown("# Weekly bet amounts per market for traders Agents 🤖")
with gr.Row():
a_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
trader_agents_data, trader_filter="agent"
)
with gr.Row():
gr.Markdown("# Weekly bet amounts per market for Non-agent traders")
with gr.Row():
na_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
trader_agents_data, trader_filter="non_agent"
)
with gr.TabItem("🎖️Weekly winning trades % per trader"):
with gr.Row():
gr.Markdown("# Weekly winning trades percentage from all traders")
with gr.Row():
metrics_text = get_metrics_text()
with gr.Row():
winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics)
# Agentic traders
with gr.Row():
gr.Markdown("# Weekly winning trades percentage from traders Agents")
with gr.Row():
metrics_text = get_metrics_text()
with gr.Row():
winning_metric = plot_winning_metric_per_trader(
weekly_agent_winning_metrics
)
# Non_agentic traders
with gr.Row():
gr.Markdown("# Weekly winning trades percentage from Non-agent traders")
with gr.Row():
metrics_text = get_metrics_text()
with gr.Row():
winning_metric = plot_winning_metric_per_trader(
weekly_non_agent_winning_metrics
)
demo.queue(default_concurrency_limit=40).launch()