cyberosa
commited on
Commit
·
3035b84
1
Parent(s):
5b74576
new labels for traders
Browse files- app.py +82 -40
- data/daily_info.parquet +2 -2
- data/unknown_daily_traders.parquet +3 -0
- data/unknown_traders.parquet +3 -0
- scripts/metrics.py +4 -4
- tabs/market_plots.py +22 -22
- tabs/trader_plots.py +8 -10
app.py
CHANGED
@@ -77,14 +77,21 @@ def get_all_data():
|
|
77 |
FROM read_parquet('./data/daily_info.parquet')
|
78 |
"""
|
79 |
df3 = con.execute(query3).fetchdf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
con.close()
|
81 |
|
82 |
-
return df1, df2, df3
|
83 |
|
84 |
|
85 |
def prepare_data():
|
86 |
|
87 |
-
all_trades, closed_markets, daily_info = get_all_data()
|
88 |
|
89 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
90 |
|
@@ -99,6 +106,7 @@ def prepare_data():
|
|
99 |
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
|
100 |
)
|
101 |
daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date
|
|
|
102 |
# adding the trader family column
|
103 |
traders_data["trader_family"] = traders_data.apply(
|
104 |
lambda x: get_traders_family(x), axis=1
|
@@ -106,29 +114,28 @@ def prepare_data():
|
|
106 |
print(traders_data.head())
|
107 |
|
108 |
traders_data = traders_data.sort_values(by="creation_timestamp", ascending=True)
|
109 |
-
|
|
|
|
|
110 |
traders_data["month_year_week"] = (
|
111 |
traders_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
|
112 |
)
|
113 |
-
|
|
|
|
|
114 |
closed_markets["month_year_week"] = (
|
115 |
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
|
116 |
)
|
117 |
-
return traders_data, closed_markets, daily_info
|
118 |
|
119 |
|
120 |
-
traders_data, closed_markets, daily_info = prepare_data()
|
121 |
|
122 |
demo = gr.Blocks()
|
123 |
# get weekly metrics by market creator: qs, pearl or all.
|
124 |
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
125 |
traders_data
|
126 |
)
|
127 |
-
print(
|
128 |
-
weekly_metrics_by_market_creator.loc[
|
129 |
-
weekly_metrics_by_market_creator["market_creator"] == "all"
|
130 |
-
].roi_diff_perc.describe()
|
131 |
-
)
|
132 |
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
133 |
traders_data, trader_filter="non_Olas"
|
134 |
)
|
@@ -136,6 +143,10 @@ weekly_non_olas_metrics_by_market_creator = compute_weekly_metrics_by_market_cre
|
|
136 |
traders_data, trader_filter="non_Olas"
|
137 |
)
|
138 |
|
|
|
|
|
|
|
|
|
139 |
weekly_winning_metrics = compute_winning_metrics_by_trader(traders_data=traders_data)
|
140 |
weekly_non_olas_winning_metrics = compute_winning_metrics_by_trader(
|
141 |
traders_data=traders_data, trader_filter="non_Olas"
|
@@ -191,7 +202,7 @@ with demo:
|
|
191 |
|
192 |
with gr.Row():
|
193 |
with gr.Column(scale=3):
|
194 |
-
|
195 |
metric_name=default_trader_metric,
|
196 |
traders_df=weekly_metrics_by_market_creator,
|
197 |
)
|
@@ -207,14 +218,14 @@ with demo:
|
|
207 |
trader_o_details_selector.change(
|
208 |
update_a_trader_details,
|
209 |
inputs=trader_o_details_selector,
|
210 |
-
outputs=
|
211 |
)
|
212 |
|
213 |
# Non-Olas traders graph
|
214 |
with gr.Row():
|
215 |
gr.Markdown("# Weekly metrics of Non-Olas traders")
|
216 |
with gr.Row():
|
217 |
-
|
218 |
label="Select a weekly trader metric",
|
219 |
choices=trader_metric_choices,
|
220 |
value=default_trader_metric,
|
@@ -222,23 +233,53 @@ with demo:
|
|
222 |
|
223 |
with gr.Row():
|
224 |
with gr.Column(scale=3):
|
225 |
-
|
226 |
metric_name=default_trader_metric,
|
227 |
traders_df=weekly_non_olas_metrics_by_market_creator,
|
228 |
)
|
229 |
with gr.Column(scale=1):
|
230 |
trade_details_text = get_metrics_text()
|
231 |
|
232 |
-
def
|
233 |
return plot_trader_metrics_by_market_creator(
|
234 |
metric_name=trader_detail,
|
235 |
traders_df=weekly_non_olas_metrics_by_market_creator,
|
236 |
)
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
inputs=
|
241 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
)
|
243 |
with gr.TabItem("📅 Daily metrics"):
|
244 |
current_week_trades = get_current_week_data(trades_df=traders_data)
|
@@ -283,11 +324,11 @@ with demo:
|
|
283 |
inputs=[trade_live_details_selector, trade_live_details_plot],
|
284 |
outputs=[trade_live_details_plot],
|
285 |
)
|
286 |
-
|
287 |
with gr.Row():
|
288 |
gr.Markdown("# Daily live metrics for 🌊 Olas traders")
|
289 |
with gr.Row():
|
290 |
-
|
291 |
label="Select a daily live metric",
|
292 |
choices=trader_daily_metric_choices,
|
293 |
value=default_daily_metric,
|
@@ -295,7 +336,7 @@ with demo:
|
|
295 |
|
296 |
with gr.Row():
|
297 |
with gr.Column(scale=3):
|
298 |
-
|
299 |
metric_name=default_daily_metric,
|
300 |
trades_df=live_metrics_by_market_creator,
|
301 |
trader_filter="Olas",
|
@@ -304,22 +345,22 @@ with demo:
|
|
304 |
trade_details_text = get_metrics_text(daily=True)
|
305 |
|
306 |
def update_a_trader_live_details(trade_detail, a_trader_live_details_plot):
|
307 |
-
|
308 |
metric_name=trade_detail,
|
309 |
trades_df=live_metrics_by_market_creator,
|
310 |
trader_filter="Olas",
|
311 |
)
|
312 |
-
return
|
313 |
|
314 |
-
|
315 |
update_a_trader_live_details,
|
316 |
-
inputs=[
|
317 |
-
outputs=[
|
318 |
)
|
319 |
with gr.Row():
|
320 |
gr.Markdown("# Daily live metrics for Non-Olas traders")
|
321 |
with gr.Row():
|
322 |
-
|
323 |
label="Select a daily live metric",
|
324 |
choices=trader_daily_metric_choices,
|
325 |
value=default_daily_metric,
|
@@ -327,7 +368,7 @@ with demo:
|
|
327 |
|
328 |
with gr.Row():
|
329 |
with gr.Column(scale=3):
|
330 |
-
|
331 |
metric_name=default_daily_metric,
|
332 |
trades_df=live_metrics_by_market_creator,
|
333 |
trader_filter="non_Olas",
|
@@ -336,19 +377,19 @@ with demo:
|
|
336 |
trade_details_text = get_metrics_text(daily=True)
|
337 |
|
338 |
def update_na_trader_live_details(
|
339 |
-
trade_detail,
|
340 |
):
|
341 |
-
|
342 |
metric_name=trade_detail,
|
343 |
trades_df=live_metrics_by_market_creator,
|
344 |
trader_filter="non_Olas",
|
345 |
)
|
346 |
-
return
|
347 |
|
348 |
-
|
349 |
update_na_trader_live_details,
|
350 |
-
inputs=[
|
351 |
-
outputs=[
|
352 |
)
|
353 |
|
354 |
with gr.TabItem("📉 Markets Kullback–Leibler divergence"):
|
@@ -381,7 +422,7 @@ with demo:
|
|
381 |
"# Weekly total bet amount per trader type for Pearl markets"
|
382 |
)
|
383 |
with gr.Row():
|
384 |
-
|
385 |
traders_data, market_filter="pearl"
|
386 |
)
|
387 |
|
@@ -390,9 +431,10 @@ with demo:
|
|
390 |
"# Weekly total bet amount per trader type for Quickstart markets"
|
391 |
)
|
392 |
with gr.Row():
|
393 |
-
|
394 |
traders_data, market_filter="quickstart"
|
395 |
)
|
|
|
396 |
with gr.TabItem("💰 Money invested per market"):
|
397 |
with gr.Row():
|
398 |
gr.Markdown("# Weekly bet amounts per market for all traders")
|
@@ -402,14 +444,14 @@ with demo:
|
|
402 |
with gr.Row():
|
403 |
gr.Markdown("# Weekly bet amounts per market for 🌊 Olas traders")
|
404 |
with gr.Row():
|
405 |
-
|
406 |
traders_data, trader_filter="Olas"
|
407 |
)
|
408 |
|
409 |
with gr.Row():
|
410 |
gr.Markdown("# Weekly bet amounts per market for Non-Olas traders")
|
411 |
with gr.Row():
|
412 |
-
|
413 |
traders_data, trader_filter="non_Olas"
|
414 |
)
|
415 |
|
|
|
77 |
FROM read_parquet('./data/daily_info.parquet')
|
78 |
"""
|
79 |
df3 = con.execute(query3).fetchdf()
|
80 |
+
|
81 |
+
# Query to fetch daily live data of unknown daily traders
|
82 |
+
query4 = f"""
|
83 |
+
SELECT *
|
84 |
+
FROM read_parquet('./data/unknown_traders.parquet')
|
85 |
+
"""
|
86 |
+
df4 = con.execute(query4).fetchdf()
|
87 |
con.close()
|
88 |
|
89 |
+
return df1, df2, df3, df4
|
90 |
|
91 |
|
92 |
def prepare_data():
|
93 |
|
94 |
+
all_trades, closed_markets, daily_info, unknown_traders = get_all_data()
|
95 |
|
96 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
97 |
|
|
|
106 |
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
|
107 |
)
|
108 |
daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date
|
109 |
+
unknown_traders["creation_date"] = unknown_traders["creation_timestamp"].dt.date
|
110 |
# adding the trader family column
|
111 |
traders_data["trader_family"] = traders_data.apply(
|
112 |
lambda x: get_traders_family(x), axis=1
|
|
|
114 |
print(traders_data.head())
|
115 |
|
116 |
traders_data = traders_data.sort_values(by="creation_timestamp", ascending=True)
|
117 |
+
unknown_traders = unknown_traders.sort_values(
|
118 |
+
by="creation_timestamp", ascending=True
|
119 |
+
)
|
120 |
traders_data["month_year_week"] = (
|
121 |
traders_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
|
122 |
)
|
123 |
+
unknown_traders["month_year_week"] = (
|
124 |
+
unknown_traders["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
|
125 |
+
)
|
126 |
closed_markets["month_year_week"] = (
|
127 |
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
|
128 |
)
|
129 |
+
return traders_data, closed_markets, daily_info, unknown_traders
|
130 |
|
131 |
|
132 |
+
traders_data, closed_markets, daily_info, unknown_traders = prepare_data()
|
133 |
|
134 |
demo = gr.Blocks()
|
135 |
# get weekly metrics by market creator: qs, pearl or all.
|
136 |
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
137 |
traders_data
|
138 |
)
|
|
|
|
|
|
|
|
|
|
|
139 |
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
140 |
traders_data, trader_filter="non_Olas"
|
141 |
)
|
|
|
143 |
traders_data, trader_filter="non_Olas"
|
144 |
)
|
145 |
|
146 |
+
weekly_unknown_trader_metrics_by_market_creator = (
|
147 |
+
compute_weekly_metrics_by_market_creator(unknown_traders)
|
148 |
+
)
|
149 |
+
|
150 |
weekly_winning_metrics = compute_winning_metrics_by_trader(traders_data=traders_data)
|
151 |
weekly_non_olas_winning_metrics = compute_winning_metrics_by_trader(
|
152 |
traders_data=traders_data, trader_filter="non_Olas"
|
|
|
202 |
|
203 |
with gr.Row():
|
204 |
with gr.Column(scale=3):
|
205 |
+
o_trader_markets_plot = plot_trader_metrics_by_market_creator(
|
206 |
metric_name=default_trader_metric,
|
207 |
traders_df=weekly_metrics_by_market_creator,
|
208 |
)
|
|
|
218 |
trader_o_details_selector.change(
|
219 |
update_a_trader_details,
|
220 |
inputs=trader_o_details_selector,
|
221 |
+
outputs=o_trader_markets_plot,
|
222 |
)
|
223 |
|
224 |
# Non-Olas traders graph
|
225 |
with gr.Row():
|
226 |
gr.Markdown("# Weekly metrics of Non-Olas traders")
|
227 |
with gr.Row():
|
228 |
+
trader_no_details_selector = gr.Dropdown(
|
229 |
label="Select a weekly trader metric",
|
230 |
choices=trader_metric_choices,
|
231 |
value=default_trader_metric,
|
|
|
233 |
|
234 |
with gr.Row():
|
235 |
with gr.Column(scale=3):
|
236 |
+
trader_no_markets_plot = plot_trader_metrics_by_market_creator(
|
237 |
metric_name=default_trader_metric,
|
238 |
traders_df=weekly_non_olas_metrics_by_market_creator,
|
239 |
)
|
240 |
with gr.Column(scale=1):
|
241 |
trade_details_text = get_metrics_text()
|
242 |
|
243 |
+
def update_no_trader_details(trader_detail):
|
244 |
return plot_trader_metrics_by_market_creator(
|
245 |
metric_name=trader_detail,
|
246 |
traders_df=weekly_non_olas_metrics_by_market_creator,
|
247 |
)
|
248 |
|
249 |
+
trader_no_details_selector.change(
|
250 |
+
update_no_trader_details,
|
251 |
+
inputs=trader_no_details_selector,
|
252 |
+
outputs=trader_no_markets_plot,
|
253 |
+
)
|
254 |
+
# Unknown traders graph
|
255 |
+
with gr.Row():
|
256 |
+
gr.Markdown("# Weekly metrics of Unknown traders")
|
257 |
+
with gr.Row():
|
258 |
+
trader_u_details_selector = gr.Dropdown(
|
259 |
+
label="Select a weekly trader metric",
|
260 |
+
choices=trader_metric_choices,
|
261 |
+
value=default_trader_metric,
|
262 |
+
)
|
263 |
+
|
264 |
+
with gr.Row():
|
265 |
+
with gr.Column(scale=3):
|
266 |
+
trader_u_markets_plot = plot_trader_metrics_by_market_creator(
|
267 |
+
metric_name=default_trader_metric,
|
268 |
+
traders_df=weekly_unknown_trader_metrics_by_market_creator,
|
269 |
+
)
|
270 |
+
with gr.Column(scale=1):
|
271 |
+
trade_details_text = get_metrics_text()
|
272 |
+
|
273 |
+
def update_u_trader_details(trader_detail):
|
274 |
+
return plot_trader_metrics_by_market_creator(
|
275 |
+
metric_name=trader_detail,
|
276 |
+
traders_df=weekly_unknown_trader_metrics_by_market_creator,
|
277 |
+
)
|
278 |
+
|
279 |
+
trader_u_details_selector.change(
|
280 |
+
update_u_trader_details,
|
281 |
+
inputs=trader_u_details_selector,
|
282 |
+
outputs=trader_u_markets_plot,
|
283 |
)
|
284 |
with gr.TabItem("📅 Daily metrics"):
|
285 |
current_week_trades = get_current_week_data(trades_df=traders_data)
|
|
|
324 |
inputs=[trade_live_details_selector, trade_live_details_plot],
|
325 |
outputs=[trade_live_details_plot],
|
326 |
)
|
327 |
+
# Olas traders
|
328 |
with gr.Row():
|
329 |
gr.Markdown("# Daily live metrics for 🌊 Olas traders")
|
330 |
with gr.Row():
|
331 |
+
o_trader_live_details_selector = gr.Dropdown(
|
332 |
label="Select a daily live metric",
|
333 |
choices=trader_daily_metric_choices,
|
334 |
value=default_daily_metric,
|
|
|
336 |
|
337 |
with gr.Row():
|
338 |
with gr.Column(scale=3):
|
339 |
+
o_trader_live_details_plot = plot_daily_metrics(
|
340 |
metric_name=default_daily_metric,
|
341 |
trades_df=live_metrics_by_market_creator,
|
342 |
trader_filter="Olas",
|
|
|
345 |
trade_details_text = get_metrics_text(daily=True)
|
346 |
|
347 |
def update_a_trader_live_details(trade_detail, a_trader_live_details_plot):
|
348 |
+
o_trader_plot = plot_daily_metrics(
|
349 |
metric_name=trade_detail,
|
350 |
trades_df=live_metrics_by_market_creator,
|
351 |
trader_filter="Olas",
|
352 |
)
|
353 |
+
return o_trader_plot
|
354 |
|
355 |
+
o_trader_live_details_selector.change(
|
356 |
update_a_trader_live_details,
|
357 |
+
inputs=[o_trader_live_details_selector, o_trader_live_details_plot],
|
358 |
+
outputs=[o_trader_live_details_plot],
|
359 |
)
|
360 |
with gr.Row():
|
361 |
gr.Markdown("# Daily live metrics for Non-Olas traders")
|
362 |
with gr.Row():
|
363 |
+
no_trader_live_details_selector = gr.Dropdown(
|
364 |
label="Select a daily live metric",
|
365 |
choices=trader_daily_metric_choices,
|
366 |
value=default_daily_metric,
|
|
|
368 |
|
369 |
with gr.Row():
|
370 |
with gr.Column(scale=3):
|
371 |
+
no_trader_live_details_plot = plot_daily_metrics(
|
372 |
metric_name=default_daily_metric,
|
373 |
trades_df=live_metrics_by_market_creator,
|
374 |
trader_filter="non_Olas",
|
|
|
377 |
trade_details_text = get_metrics_text(daily=True)
|
378 |
|
379 |
def update_na_trader_live_details(
|
380 |
+
trade_detail, no_trader_live_details_plot
|
381 |
):
|
382 |
+
no_trader_plot = plot_daily_metrics(
|
383 |
metric_name=trade_detail,
|
384 |
trades_df=live_metrics_by_market_creator,
|
385 |
trader_filter="non_Olas",
|
386 |
)
|
387 |
+
return no_trader_plot
|
388 |
|
389 |
+
no_trader_live_details_selector.change(
|
390 |
update_na_trader_live_details,
|
391 |
+
inputs=[no_trader_live_details_selector, no_trader_live_details_plot],
|
392 |
+
outputs=[no_trader_live_details_plot],
|
393 |
)
|
394 |
|
395 |
with gr.TabItem("📉 Markets Kullback–Leibler divergence"):
|
|
|
422 |
"# Weekly total bet amount per trader type for Pearl markets"
|
423 |
)
|
424 |
with gr.Row():
|
425 |
+
o_trader_total_bet_amount = plot_total_bet_amount(
|
426 |
traders_data, market_filter="pearl"
|
427 |
)
|
428 |
|
|
|
431 |
"# Weekly total bet amount per trader type for Quickstart markets"
|
432 |
)
|
433 |
with gr.Row():
|
434 |
+
no_trader_total_bet_amount = plot_total_bet_amount(
|
435 |
traders_data, market_filter="quickstart"
|
436 |
)
|
437 |
+
|
438 |
with gr.TabItem("💰 Money invested per market"):
|
439 |
with gr.Row():
|
440 |
gr.Markdown("# Weekly bet amounts per market for all traders")
|
|
|
444 |
with gr.Row():
|
445 |
gr.Markdown("# Weekly bet amounts per market for 🌊 Olas traders")
|
446 |
with gr.Row():
|
447 |
+
o_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
|
448 |
traders_data, trader_filter="Olas"
|
449 |
)
|
450 |
|
451 |
with gr.Row():
|
452 |
gr.Markdown("# Weekly bet amounts per market for Non-Olas traders")
|
453 |
with gr.Row():
|
454 |
+
no_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
|
455 |
traders_data, trader_filter="non_Olas"
|
456 |
)
|
457 |
|
data/daily_info.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1786521d10be3b3c7ccff825d4f5d4e3c8ec7616e351f89bc56ae846f421f6bc
|
3 |
+
size 884405
|
data/unknown_daily_traders.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f75e649183ccbf7179b4a79315e8957971f13a4e03870852e5850da65fd8821
|
3 |
+
size 48908
|
data/unknown_traders.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ab41a7a35d8bf5c588b95849ec650e048578ddcbb18bc62df0e7a3c96902ea5
|
3 |
+
size 368142
|
scripts/metrics.py
CHANGED
@@ -66,7 +66,7 @@ def compute_trader_metrics_by_market_creator(
|
|
66 |
) -> dict:
|
67 |
"""This function computes for a specific time window (week or day) the different metrics:
|
68 |
roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades.
|
69 |
-
The global roi of the trader
|
70 |
achieved per market and dividing both.
|
71 |
It is possible to filter by market creator: quickstart, pearl, all"""
|
72 |
assert "market_creator" in traders_data.columns
|
@@ -182,7 +182,7 @@ def compute_weekly_metrics_by_market_creator(
|
|
182 |
for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"):
|
183 |
if trader_filter is None:
|
184 |
contents.append(merge_trader_weekly_metrics(trader, weekly_data, week))
|
185 |
-
elif trader_filter == "
|
186 |
filtered_data = weekly_data.loc[weekly_data["staking"] != "non_Olas"]
|
187 |
contents.append(
|
188 |
merge_trader_weekly_metrics(trader, filtered_data, week)
|
@@ -217,7 +217,7 @@ def compute_daily_metrics_by_market_creator(
|
|
217 |
contents.append(
|
218 |
merge_trader_daily_metrics(trader, daily_data, day, live_metrics)
|
219 |
)
|
220 |
-
elif trader_filter == "
|
221 |
filtered_data = daily_data.loc[daily_data["staking"] != "non_Olas"]
|
222 |
contents.append(
|
223 |
merge_trader_daily_metrics(trader, filtered_data, day, live_metrics)
|
@@ -243,7 +243,7 @@ def compute_winning_metrics_by_trader(
|
|
243 |
final_traders = pd.concat([market_all, traders_data], ignore_index=True)
|
244 |
final_traders = final_traders.sort_values(by="creation_timestamp", ascending=True)
|
245 |
|
246 |
-
if trader_filter == "
|
247 |
final_traders = final_traders.loc[final_traders["staking"] != "non_Olas"]
|
248 |
else: # non_Olas traders
|
249 |
final_traders = final_traders.loc[final_traders["staking"] == "non_Olas"]
|
|
|
66 |
) -> dict:
|
67 |
"""This function computes for a specific time window (week or day) the different metrics:
|
68 |
roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades.
|
69 |
+
The global roi of the trader by computing the individual net profit and the individual costs values
|
70 |
achieved per market and dividing both.
|
71 |
It is possible to filter by market creator: quickstart, pearl, all"""
|
72 |
assert "market_creator" in traders_data.columns
|
|
|
182 |
for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"):
|
183 |
if trader_filter is None:
|
184 |
contents.append(merge_trader_weekly_metrics(trader, weekly_data, week))
|
185 |
+
elif trader_filter == "Olas":
|
186 |
filtered_data = weekly_data.loc[weekly_data["staking"] != "non_Olas"]
|
187 |
contents.append(
|
188 |
merge_trader_weekly_metrics(trader, filtered_data, week)
|
|
|
217 |
contents.append(
|
218 |
merge_trader_daily_metrics(trader, daily_data, day, live_metrics)
|
219 |
)
|
220 |
+
elif trader_filter == "Olas":
|
221 |
filtered_data = daily_data.loc[daily_data["staking"] != "non_Olas"]
|
222 |
contents.append(
|
223 |
merge_trader_daily_metrics(trader, filtered_data, day, live_metrics)
|
|
|
243 |
final_traders = pd.concat([market_all, traders_data], ignore_index=True)
|
244 |
final_traders = final_traders.sort_values(by="creation_timestamp", ascending=True)
|
245 |
|
246 |
+
if trader_filter == "Olas":
|
247 |
final_traders = final_traders.loc[final_traders["staking"] != "non_Olas"]
|
248 |
else: # non_Olas traders
|
249 |
final_traders = final_traders.loc[final_traders["staking"] == "non_Olas"]
|
tabs/market_plots.py
CHANGED
@@ -111,17 +111,17 @@ def plot_total_bet_amount_per_trader_per_market(
|
|
111 |
|
112 |
# Create binary staking category
|
113 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
114 |
-
lambda x: "
|
115 |
)
|
116 |
final_traders["trader_market"] = final_traders.apply(
|
117 |
lambda x: (x["trader_type"], x["market_creator"]), axis=1
|
118 |
)
|
119 |
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
|
120 |
-
if trader_filter == "
|
121 |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
122 |
-
final_traders = final_traders.loc[final_traders["trader_type"] == "
|
123 |
-
elif trader_filter == "
|
124 |
-
final_traders = final_traders.loc[final_traders["trader_type"] != "
|
125 |
|
126 |
total_bet_amount = (
|
127 |
final_traders.groupby(
|
@@ -149,12 +149,12 @@ def plot_total_bet_amount_per_trader_per_market(
|
|
149 |
category_orders={
|
150 |
"market_creator": ["pearl", "quickstart", "all"],
|
151 |
"trader_market": [
|
152 |
-
("
|
153 |
-
("
|
154 |
-
("
|
155 |
-
("
|
156 |
-
("
|
157 |
-
("
|
158 |
],
|
159 |
},
|
160 |
# facet_col="trader_type",
|
@@ -192,17 +192,17 @@ def plot_nr_trades_per_trader_per_market(
|
|
192 |
|
193 |
# Create binary staking category
|
194 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
195 |
-
lambda x: "
|
196 |
)
|
197 |
final_traders["trader_market"] = final_traders.apply(
|
198 |
lambda x: (x["trader_type"], x["market_creator"]), axis=1
|
199 |
)
|
200 |
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
|
201 |
-
if trader_filter == "
|
202 |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
203 |
-
final_traders = final_traders.loc[final_traders["trader_type"] == "
|
204 |
-
elif trader_filter == "
|
205 |
-
final_traders = final_traders.loc[final_traders["trader_type"] != "
|
206 |
|
207 |
fig = px.box(
|
208 |
final_traders,
|
@@ -213,12 +213,12 @@ def plot_nr_trades_per_trader_per_market(
|
|
213 |
category_orders={
|
214 |
"market_creator": ["pearl", "quickstart", "all"],
|
215 |
"trader_market": [
|
216 |
-
("
|
217 |
-
("
|
218 |
-
("
|
219 |
-
("
|
220 |
-
("
|
221 |
-
("
|
222 |
],
|
223 |
},
|
224 |
# facet_col="trader_type",
|
|
|
111 |
|
112 |
# Create binary staking category
|
113 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
114 |
+
lambda x: "non_Olas" if x == "non_Olas" else "Olas"
|
115 |
)
|
116 |
final_traders["trader_market"] = final_traders.apply(
|
117 |
lambda x: (x["trader_type"], x["market_creator"]), axis=1
|
118 |
)
|
119 |
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
|
120 |
+
if trader_filter == "Olas":
|
121 |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
122 |
+
final_traders = final_traders.loc[final_traders["trader_type"] == "Olas"]
|
123 |
+
elif trader_filter == "non_Olas":
|
124 |
+
final_traders = final_traders.loc[final_traders["trader_type"] != "Olas"]
|
125 |
|
126 |
total_bet_amount = (
|
127 |
final_traders.groupby(
|
|
|
149 |
category_orders={
|
150 |
"market_creator": ["pearl", "quickstart", "all"],
|
151 |
"trader_market": [
|
152 |
+
("Olas", "pearl"),
|
153 |
+
("non_Olas", "pearl"),
|
154 |
+
("Olas", "quickstart"),
|
155 |
+
("non_Olas", "quickstart"),
|
156 |
+
("Olas", "all"),
|
157 |
+
("non_Olas", "all"),
|
158 |
],
|
159 |
},
|
160 |
# facet_col="trader_type",
|
|
|
192 |
|
193 |
# Create binary staking category
|
194 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
195 |
+
lambda x: "non_Olas" if x == "non_Olas" else "Olas"
|
196 |
)
|
197 |
final_traders["trader_market"] = final_traders.apply(
|
198 |
lambda x: (x["trader_type"], x["market_creator"]), axis=1
|
199 |
)
|
200 |
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
|
201 |
+
if trader_filter == "Olas":
|
202 |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
203 |
+
final_traders = final_traders.loc[final_traders["trader_type"] == "Olas"]
|
204 |
+
elif trader_filter == "non_Olas":
|
205 |
+
final_traders = final_traders.loc[final_traders["trader_type"] != "Olas"]
|
206 |
|
207 |
fig = px.box(
|
208 |
final_traders,
|
|
|
213 |
category_orders={
|
214 |
"market_creator": ["pearl", "quickstart", "all"],
|
215 |
"trader_market": [
|
216 |
+
("Olas", "pearl"),
|
217 |
+
("non_Olas", "pearl"),
|
218 |
+
("Olas", "quickstart"),
|
219 |
+
("non_Olas", "quickstart"),
|
220 |
+
("Olas", "all"),
|
221 |
+
("non_Olas", "all"),
|
222 |
],
|
223 |
},
|
224 |
# facet_col="trader_type",
|
tabs/trader_plots.py
CHANGED
@@ -199,7 +199,7 @@ def plot_total_bet_amount(
|
|
199 |
final_traders = final_traders.sort_values(by="creation_date", ascending=True)
|
200 |
# Create binary staking category
|
201 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
202 |
-
lambda x: "
|
203 |
)
|
204 |
|
205 |
total_bet_amount = (
|
@@ -245,12 +245,12 @@ def plot_total_bet_amount(
|
|
245 |
category_orders={
|
246 |
"market_creator": ["pearl", "quickstart", "all"],
|
247 |
"trader_market": [
|
248 |
-
("
|
249 |
-
("
|
250 |
-
("
|
251 |
-
("
|
252 |
-
("
|
253 |
-
("
|
254 |
],
|
255 |
},
|
256 |
barmode="group",
|
@@ -261,9 +261,7 @@ def plot_total_bet_amount(
|
|
261 |
yaxis_title="Weekly total bet amount per trader type",
|
262 |
legend=dict(yanchor="top", y=0.5),
|
263 |
)
|
264 |
-
|
265 |
-
# if axis.startswith("xaxis"):
|
266 |
-
# fig.layout[axis].update(title="Week")
|
267 |
fig.update_xaxes(tickformat="%b %d")
|
268 |
# Update layout to force x-axis category order (hotfix for a sorting issue)
|
269 |
fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})
|
|
|
199 |
final_traders = final_traders.sort_values(by="creation_date", ascending=True)
|
200 |
# Create binary staking category
|
201 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
202 |
+
lambda x: "non_Olas" if x == "non_Olas" else "Olas"
|
203 |
)
|
204 |
|
205 |
total_bet_amount = (
|
|
|
245 |
category_orders={
|
246 |
"market_creator": ["pearl", "quickstart", "all"],
|
247 |
"trader_market": [
|
248 |
+
("Olas", "pearl"),
|
249 |
+
("non_Olas", "pearl"),
|
250 |
+
("Olas", "quickstart"),
|
251 |
+
("non_Olas", "quickstart"),
|
252 |
+
("Olas", "all"),
|
253 |
+
("non_Olas", "all"),
|
254 |
],
|
255 |
},
|
256 |
barmode="group",
|
|
|
261 |
yaxis_title="Weekly total bet amount per trader type",
|
262 |
legend=dict(yanchor="top", y=0.5),
|
263 |
)
|
264 |
+
|
|
|
|
|
265 |
fig.update_xaxes(tickformat="%b %d")
|
266 |
# Update layout to force x-axis category order (hotfix for a sorting issue)
|
267 |
fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})
|