cyberosa
commited on
Commit
·
3498a52
1
Parent(s):
8704528
new money invested tabs and graphs
Browse files- app.py +18 -25
- tabs/market_plots.py +11 -63
- tabs/trader_plots.py +57 -0
app.py
CHANGED
@@ -17,6 +17,7 @@ from tabs.trader_plots import (
|
|
17 |
get_metrics_text,
|
18 |
plot_winning_metric_per_trader,
|
19 |
get_interpretation_text,
|
|
|
20 |
)
|
21 |
from tabs.daily_graphs import (
|
22 |
get_current_week_data,
|
@@ -27,7 +28,6 @@ from tabs.daily_graphs import (
|
|
27 |
from scripts.utils import get_traders_family
|
28 |
from tabs.market_plots import (
|
29 |
plot_kl_div_per_market,
|
30 |
-
plot_nr_trades_per_trader_per_market,
|
31 |
plot_total_bet_amount_per_trader_per_market,
|
32 |
)
|
33 |
|
@@ -406,56 +406,49 @@ with demo:
|
|
406 |
with gr.Column(scale=1):
|
407 |
interpretation = get_interpretation_text()
|
408 |
|
409 |
-
with gr.TabItem("
|
410 |
with gr.Row():
|
411 |
-
gr.Markdown(
|
412 |
-
"# Weekly nr of trades per trader per market for all traders"
|
413 |
-
)
|
414 |
-
|
415 |
with gr.Row():
|
416 |
-
|
417 |
-
|
418 |
-
)
|
419 |
with gr.Row():
|
420 |
gr.Markdown(
|
421 |
-
"# Weekly
|
422 |
)
|
423 |
-
|
424 |
with gr.Row():
|
425 |
-
|
426 |
trader_agents_data, trader_filter="agent"
|
427 |
)
|
|
|
428 |
with gr.Row():
|
429 |
gr.Markdown(
|
430 |
-
"# Weekly
|
431 |
)
|
432 |
-
|
433 |
with gr.Row():
|
434 |
-
|
435 |
trader_agents_data, trader_filter="non_agent"
|
436 |
)
|
437 |
-
with gr.TabItem("💰 Money invested"):
|
438 |
with gr.Row():
|
439 |
-
gr.Markdown("# Weekly
|
440 |
with gr.Row():
|
441 |
-
|
442 |
trader_agents_data
|
443 |
)
|
444 |
|
445 |
with gr.Row():
|
446 |
-
gr.Markdown("# Weekly
|
447 |
with gr.Row():
|
448 |
-
|
449 |
trader_agents_data, trader_filter="agent"
|
450 |
)
|
451 |
|
452 |
with gr.Row():
|
453 |
-
gr.Markdown("# Weekly
|
454 |
with gr.Row():
|
455 |
-
|
456 |
-
|
457 |
-
trader_agents_data, trader_filter="non_agent"
|
458 |
-
)
|
459 |
)
|
460 |
|
461 |
with gr.TabItem("🎖️Weekly winning trades % per trader"):
|
|
|
17 |
get_metrics_text,
|
18 |
plot_winning_metric_per_trader,
|
19 |
get_interpretation_text,
|
20 |
+
plot_total_bet_amount,
|
21 |
)
|
22 |
from tabs.daily_graphs import (
|
23 |
get_current_week_data,
|
|
|
28 |
from scripts.utils import get_traders_family
|
29 |
from tabs.market_plots import (
|
30 |
plot_kl_div_per_market,
|
|
|
31 |
plot_total_bet_amount_per_trader_per_market,
|
32 |
)
|
33 |
|
|
|
406 |
with gr.Column(scale=1):
|
407 |
interpretation = get_interpretation_text()
|
408 |
|
409 |
+
with gr.TabItem("💰 Money invested per trader"):
|
410 |
with gr.Row():
|
411 |
+
gr.Markdown("# Weekly total bet amount per trader for all traders")
|
|
|
|
|
|
|
412 |
with gr.Row():
|
413 |
+
total_bet_amount = plot_total_bet_amount(trader_agents_data)
|
414 |
+
|
|
|
415 |
with gr.Row():
|
416 |
gr.Markdown(
|
417 |
+
"# Weekly total bet amount per trader for traders Agents 🤖"
|
418 |
)
|
|
|
419 |
with gr.Row():
|
420 |
+
a_trader_total_bet_amount = plot_total_bet_amount(
|
421 |
trader_agents_data, trader_filter="agent"
|
422 |
)
|
423 |
+
|
424 |
with gr.Row():
|
425 |
gr.Markdown(
|
426 |
+
"# Weekly total bet amount per trader for Non-agent traders"
|
427 |
)
|
|
|
428 |
with gr.Row():
|
429 |
+
na_trader_total_bet_amount = plot_total_bet_amount(
|
430 |
trader_agents_data, trader_filter="non_agent"
|
431 |
)
|
432 |
+
with gr.TabItem("💰 Money invested per market"):
|
433 |
with gr.Row():
|
434 |
+
gr.Markdown("# Weekly bet amounts per market for all traders")
|
435 |
with gr.Row():
|
436 |
+
bet_amounts = plot_total_bet_amount_per_trader_per_market(
|
437 |
trader_agents_data
|
438 |
)
|
439 |
|
440 |
with gr.Row():
|
441 |
+
gr.Markdown("# Weekly bet amounts per market for traders Agents 🤖")
|
442 |
with gr.Row():
|
443 |
+
a_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
|
444 |
trader_agents_data, trader_filter="agent"
|
445 |
)
|
446 |
|
447 |
with gr.Row():
|
448 |
+
gr.Markdown("# Weekly bet amounts per market for Non-agent traders")
|
449 |
with gr.Row():
|
450 |
+
na_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
|
451 |
+
trader_agents_data, trader_filter="non_agent"
|
|
|
|
|
452 |
)
|
453 |
|
454 |
with gr.TabItem("🎖️Weekly winning trades % per trader"):
|
tabs/market_plots.py
CHANGED
@@ -7,6 +7,15 @@ import matplotlib.pyplot as plt
|
|
7 |
import seaborn as sns
|
8 |
from tabs.daily_graphs import color_mapping
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def plot_kl_div_per_market(closed_markets: pd.DataFrame) -> gr.Plot:
|
12 |
|
@@ -88,67 +97,6 @@ def plot_kl_div_with_off_by(closed_markets: pd.DataFrame) -> gr.Plot:
|
|
88 |
)
|
89 |
|
90 |
|
91 |
-
def plot_total_bet_amount(trades_df: pd.DataFrame) -> gr.Plot:
|
92 |
-
"""Plots the trade metrics."""
|
93 |
-
# Create binary staking category
|
94 |
-
trades_df["trader_type"] = trades_df["staking"].apply(
|
95 |
-
lambda x: "non_agent" if x == "non_agent" else "agent"
|
96 |
-
)
|
97 |
-
|
98 |
-
total_bet_amount = (
|
99 |
-
trades_df.groupby(
|
100 |
-
["month_year_week", "market_creator", "trader_type"], sort=False
|
101 |
-
)["collateral_amount"]
|
102 |
-
.sum()
|
103 |
-
.reset_index(name="total_bet_amount")
|
104 |
-
)
|
105 |
-
color_mapping = [
|
106 |
-
"darkviolet",
|
107 |
-
"purple",
|
108 |
-
"goldenrod",
|
109 |
-
"darkgoldenrod",
|
110 |
-
"green",
|
111 |
-
"darkgreen",
|
112 |
-
]
|
113 |
-
total_bet_amount["trader_market"] = total_bet_amount.apply(
|
114 |
-
lambda x: (x["trader_type"], x["market_creator"]), axis=1
|
115 |
-
)
|
116 |
-
|
117 |
-
fig = px.bar(
|
118 |
-
total_bet_amount,
|
119 |
-
x="month_year_week",
|
120 |
-
y="total_bet_amount",
|
121 |
-
color="trader_market",
|
122 |
-
color_discrete_sequence=color_mapping,
|
123 |
-
category_orders={
|
124 |
-
"market_creator": ["pearl", "quickstart", "all"],
|
125 |
-
"trader_market": [
|
126 |
-
("agent", "pearl"),
|
127 |
-
("non_agent", "pearl"),
|
128 |
-
("agent", "quickstart"),
|
129 |
-
("non_agent", "quickstart"),
|
130 |
-
("agent", "all"),
|
131 |
-
("non_agent", "all"),
|
132 |
-
],
|
133 |
-
},
|
134 |
-
barmode="group",
|
135 |
-
facet_col="market_creator",
|
136 |
-
)
|
137 |
-
|
138 |
-
fig.update_layout(
|
139 |
-
xaxis_title="Week",
|
140 |
-
yaxis_title="Weekly total bet amount",
|
141 |
-
legend=dict(yanchor="top", y=0.5),
|
142 |
-
)
|
143 |
-
for axis in fig.layout:
|
144 |
-
if axis.startswith("xaxis"):
|
145 |
-
fig.layout[axis].update(title="Week")
|
146 |
-
fig.update_xaxes(tickformat="%b %d")
|
147 |
-
return gr.Plot(
|
148 |
-
value=fig,
|
149 |
-
)
|
150 |
-
|
151 |
-
|
152 |
def plot_total_bet_amount_per_trader_per_market(
|
153 |
trades_df: pd.DataFrame, trader_filter: str = "all"
|
154 |
) -> gr.Plot:
|
@@ -202,10 +150,10 @@ def plot_total_bet_amount_per_trader_per_market(
|
|
202 |
},
|
203 |
# facet_col="trader_type",
|
204 |
)
|
205 |
-
|
206 |
fig.update_layout(
|
207 |
xaxis_title="Week",
|
208 |
-
yaxis_title="Weekly
|
209 |
legend=dict(yanchor="top", y=0.5),
|
210 |
width=1000, # Adjusted for better fit on laptop screens
|
211 |
height=600, # Adjusted for better fit on laptop screens
|
|
|
7 |
import seaborn as sns
|
8 |
from tabs.daily_graphs import color_mapping
|
9 |
|
10 |
+
color_mapping = [
|
11 |
+
"darkviolet",
|
12 |
+
"purple",
|
13 |
+
"goldenrod",
|
14 |
+
"darkgoldenrod",
|
15 |
+
"green",
|
16 |
+
"darkgreen",
|
17 |
+
]
|
18 |
+
|
19 |
|
20 |
def plot_kl_div_per_market(closed_markets: pd.DataFrame) -> gr.Plot:
|
21 |
|
|
|
97 |
)
|
98 |
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
def plot_total_bet_amount_per_trader_per_market(
|
101 |
trades_df: pd.DataFrame, trader_filter: str = "all"
|
102 |
) -> gr.Plot:
|
|
|
150 |
},
|
151 |
# facet_col="trader_type",
|
152 |
)
|
153 |
+
fig.update_traces(boxmean=True)
|
154 |
fig.update_layout(
|
155 |
xaxis_title="Week",
|
156 |
+
yaxis_title="Weekly bet amounts per trader per market",
|
157 |
legend=dict(yanchor="top", y=0.5),
|
158 |
width=1000, # Adjusted for better fit on laptop screens
|
159 |
height=600, # Adjusted for better fit on laptop screens
|
tabs/trader_plots.py
CHANGED
@@ -173,3 +173,60 @@ def plot_winning_metric_per_trader(traders_winning_df: pd.DataFrame) -> gr.Plot:
|
|
173 |
return gr.Plot(
|
174 |
value=fig,
|
175 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
return gr.Plot(
|
174 |
value=fig,
|
175 |
)
|
176 |
+
|
177 |
+
|
178 |
+
def plot_total_bet_amount(
|
179 |
+
trades_df: pd.DataFrame, trader_filter: str = "all"
|
180 |
+
) -> gr.Plot:
|
181 |
+
"""Plots the trade metrics."""
|
182 |
+
traders_all = trades_df.copy(deep=True)
|
183 |
+
traders_all["market_creator"] = "all"
|
184 |
+
|
185 |
+
# merging both dataframes
|
186 |
+
final_traders = pd.concat([traders_all, trades_df], ignore_index=True)
|
187 |
+
final_traders = final_traders.sort_values(by="creation_date", ascending=True)
|
188 |
+
# Create binary staking category
|
189 |
+
final_traders["trader_type"] = final_traders["staking"].apply(
|
190 |
+
lambda x: "non_agent" if x == "non_agent" else "agent"
|
191 |
+
)
|
192 |
+
|
193 |
+
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
|
194 |
+
if trader_filter == "agent":
|
195 |
+
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
196 |
+
final_traders = final_traders.loc[final_traders["trader_type"] == "agent"]
|
197 |
+
elif trader_filter == "non_agent":
|
198 |
+
final_traders = final_traders.loc[final_traders["trader_type"] != "agent"]
|
199 |
+
|
200 |
+
total_bet_amount = (
|
201 |
+
final_traders.groupby(
|
202 |
+
["month_year_week", "market_creator", "trader_address"], sort=False
|
203 |
+
)["collateral_amount"]
|
204 |
+
.sum()
|
205 |
+
.reset_index(name="total_bet_amount")
|
206 |
+
)
|
207 |
+
|
208 |
+
fig = px.box(
|
209 |
+
total_bet_amount,
|
210 |
+
x="month_year_week",
|
211 |
+
y="total_bet_amount",
|
212 |
+
color="market_creator",
|
213 |
+
color_discrete_sequence=color_discrete_sequence,
|
214 |
+
category_orders={
|
215 |
+
"market_creator": ["pearl", "quickstart", "all"],
|
216 |
+
},
|
217 |
+
# barmode="group",
|
218 |
+
# facet_col="market_creator",
|
219 |
+
)
|
220 |
+
fig.update_traces(boxmean=True)
|
221 |
+
fig.update_layout(
|
222 |
+
xaxis_title="Week",
|
223 |
+
yaxis_title="Weekly total bet amount",
|
224 |
+
legend=dict(yanchor="top", y=0.5),
|
225 |
+
)
|
226 |
+
# for axis in fig.layout:
|
227 |
+
# if axis.startswith("xaxis"):
|
228 |
+
# fig.layout[axis].update(title="Week")
|
229 |
+
fig.update_xaxes(tickformat="%b %d")
|
230 |
+
return gr.Plot(
|
231 |
+
value=fig,
|
232 |
+
)
|