cyberosa
commited on
Commit
·
dff5e35
1
Parent(s):
5f3c579
corrected version of wow retention
Browse files- app.py +45 -17
- notebooks/retention_metrics.ipynb +173 -1
- scripts/retention_metrics.py +44 -11
- tabs/retention_plots.py +2 -1
app.py
CHANGED
@@ -93,14 +93,22 @@ def get_all_data():
|
|
93 |
FROM read_parquet('./data/unknown_traders.parquet')
|
94 |
"""
|
95 |
df4 = con.execute(query4).fetchdf()
|
96 |
-
con.close()
|
97 |
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
def prepare_data():
|
102 |
|
103 |
-
all_trades, closed_markets, daily_info, unknown_traders =
|
|
|
|
|
104 |
|
105 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
106 |
|
@@ -135,12 +143,12 @@ def prepare_data():
|
|
135 |
closed_markets["month_year_week"] = (
|
136 |
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d-%Y")
|
137 |
)
|
138 |
-
return traders_data, closed_markets, daily_info, unknown_traders
|
139 |
|
140 |
|
141 |
-
traders_data, closed_markets, daily_info, unknown_traders = prepare_data()
|
142 |
retention_df = prepare_retention_dataset(
|
143 |
-
|
144 |
)
|
145 |
|
146 |
demo = gr.Blocks()
|
@@ -406,17 +414,37 @@ with demo:
|
|
406 |
with gr.Row():
|
407 |
gr.Markdown("# Wow retention by trader type")
|
408 |
with gr.Row():
|
409 |
-
|
410 |
-
|
411 |
-
wow_retention=
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
421 |
with gr.TabItem("⚙️ Active traders"):
|
422 |
with gr.Row():
|
|
|
93 |
FROM read_parquet('./data/unknown_traders.parquet')
|
94 |
"""
|
95 |
df4 = con.execute(query4).fetchdf()
|
|
|
96 |
|
97 |
+
# Query to fetch retention activity data
|
98 |
+
query5 = f"""
|
99 |
+
SELECT *
|
100 |
+
FROM read_parquet('./data/retention_activity.parquet')
|
101 |
+
"""
|
102 |
+
df5 = con.execute(query5).fetchdf()
|
103 |
+
con.close()
|
104 |
+
return df1, df2, df3, df4, df5
|
105 |
|
106 |
|
107 |
def prepare_data():
|
108 |
|
109 |
+
all_trades, closed_markets, daily_info, unknown_traders, retention_df = (
|
110 |
+
get_all_data()
|
111 |
+
)
|
112 |
|
113 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
114 |
|
|
|
143 |
closed_markets["month_year_week"] = (
|
144 |
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d-%Y")
|
145 |
)
|
146 |
+
return traders_data, closed_markets, daily_info, unknown_traders, retention_df
|
147 |
|
148 |
|
149 |
+
traders_data, closed_markets, daily_info, unknown_traders, retention_df = prepare_data()
|
150 |
retention_df = prepare_retention_dataset(
|
151 |
+
retention_df=retention_df, unknown_df=unknown_traders
|
152 |
)
|
153 |
|
154 |
demo = gr.Blocks()
|
|
|
414 |
with gr.Row():
|
415 |
gr.Markdown("# Wow retention by trader type")
|
416 |
with gr.Row():
|
417 |
+
with gr.Column(scale=1):
|
418 |
+
gr.Markdown("## Wow retention in Pearl markets")
|
419 |
+
wow_retention = calculate_wow_retention_by_type(
|
420 |
+
retention_df, market_creator="pearl"
|
421 |
+
)
|
422 |
+
wow_retention_plot = plot_wow_retention_by_type(
|
423 |
+
wow_retention=wow_retention
|
424 |
+
)
|
425 |
+
with gr.Column(scale=1):
|
426 |
+
gr.Markdown("## Wow retention in Quickstart markets")
|
427 |
+
wow_retention = calculate_wow_retention_by_type(
|
428 |
+
retention_df, market_creator="quickstart"
|
429 |
+
)
|
430 |
+
wow_retention_plot = plot_wow_retention_by_type(
|
431 |
+
wow_retention=wow_retention
|
432 |
+
)
|
433 |
+
|
434 |
+
# with gr.Row():
|
435 |
+
# gr.Markdown("# Cohort retention in pearl traders")
|
436 |
+
# with gr.Row():
|
437 |
+
# cohort_retention = calculate_cohort_retention(df=retention_df)
|
438 |
+
# cohort_retention_plot = plot_cohort_retention_heatmap(
|
439 |
+
# retention_matrix=cohort_retention
|
440 |
+
# )
|
441 |
+
# with gr.Row():
|
442 |
+
# gr.Markdown("# Cohort retention in qs traders")
|
443 |
+
# with gr.Row():
|
444 |
+
# cohort_retention = calculate_cohort_retention(df=retention_df)
|
445 |
+
# cohort_retention_plot = plot_cohort_retention_heatmap(
|
446 |
+
# retention_matrix=cohort_retention
|
447 |
+
# )
|
448 |
|
449 |
with gr.TabItem("⚙️ Active traders"):
|
450 |
with gr.Row():
|
notebooks/retention_metrics.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -12,6 +12,178 @@
|
|
12 |
"import gc"
|
13 |
]
|
14 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
{
|
16 |
"cell_type": "markdown",
|
17 |
"metadata": {},
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 10,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
12 |
"import gc"
|
13 |
]
|
14 |
},
|
15 |
+
{
|
16 |
+
"cell_type": "markdown",
|
17 |
+
"metadata": {},
|
18 |
+
"source": [
|
19 |
+
"# Get all activity info from tools.parquet"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": 11,
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"retention_df = pd.read_parquet(\"../data/retention_activity.parquet\")"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 12,
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [
|
36 |
+
{
|
37 |
+
"data": {
|
38 |
+
"text/plain": [
|
39 |
+
"Index(['trader_address', 'request_time', 'market_creator', 'request_date',\n",
|
40 |
+
" 'staking', 'month_year_week'],\n",
|
41 |
+
" dtype='object')"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
"execution_count": 12,
|
45 |
+
"metadata": {},
|
46 |
+
"output_type": "execute_result"
|
47 |
+
}
|
48 |
+
],
|
49 |
+
"source": [
|
50 |
+
"retention_df.columns"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": 13,
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [
|
58 |
+
{
|
59 |
+
"data": {
|
60 |
+
"text/html": [
|
61 |
+
"<div>\n",
|
62 |
+
"<style scoped>\n",
|
63 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
64 |
+
" vertical-align: middle;\n",
|
65 |
+
" }\n",
|
66 |
+
"\n",
|
67 |
+
" .dataframe tbody tr th {\n",
|
68 |
+
" vertical-align: top;\n",
|
69 |
+
" }\n",
|
70 |
+
"\n",
|
71 |
+
" .dataframe thead th {\n",
|
72 |
+
" text-align: right;\n",
|
73 |
+
" }\n",
|
74 |
+
"</style>\n",
|
75 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
76 |
+
" <thead>\n",
|
77 |
+
" <tr style=\"text-align: right;\">\n",
|
78 |
+
" <th></th>\n",
|
79 |
+
" <th>trader_address</th>\n",
|
80 |
+
" <th>request_time</th>\n",
|
81 |
+
" <th>market_creator</th>\n",
|
82 |
+
" <th>request_date</th>\n",
|
83 |
+
" <th>staking</th>\n",
|
84 |
+
" <th>month_year_week</th>\n",
|
85 |
+
" </tr>\n",
|
86 |
+
" </thead>\n",
|
87 |
+
" <tbody>\n",
|
88 |
+
" <tr>\n",
|
89 |
+
" <th>0</th>\n",
|
90 |
+
" <td>0x721de88cee9be146c8f0c7ef1a4188bee36494d6</td>\n",
|
91 |
+
" <td>2024-10-25 00:00:20+00:00</td>\n",
|
92 |
+
" <td>quickstart</td>\n",
|
93 |
+
" <td>2024-10-25</td>\n",
|
94 |
+
" <td>non_staking</td>\n",
|
95 |
+
" <td>Oct-25-2024</td>\n",
|
96 |
+
" </tr>\n",
|
97 |
+
" <tr>\n",
|
98 |
+
" <th>1</th>\n",
|
99 |
+
" <td>0x8a1d5f22b5a3bea34697b85e7b4ad894bf9ee36a</td>\n",
|
100 |
+
" <td>2024-10-25 00:00:25+00:00</td>\n",
|
101 |
+
" <td>quickstart</td>\n",
|
102 |
+
" <td>2024-10-25</td>\n",
|
103 |
+
" <td>non_staking</td>\n",
|
104 |
+
" <td>Oct-25-2024</td>\n",
|
105 |
+
" </tr>\n",
|
106 |
+
" <tr>\n",
|
107 |
+
" <th>2</th>\n",
|
108 |
+
" <td>0xf839eaf4b42eadd917b46d7b6da0dd0e1fd6f684</td>\n",
|
109 |
+
" <td>2024-10-25 00:00:55+00:00</td>\n",
|
110 |
+
" <td>quickstart</td>\n",
|
111 |
+
" <td>2024-10-25</td>\n",
|
112 |
+
" <td>non_staking</td>\n",
|
113 |
+
" <td>Oct-25-2024</td>\n",
|
114 |
+
" </tr>\n",
|
115 |
+
" <tr>\n",
|
116 |
+
" <th>3</th>\n",
|
117 |
+
" <td>0x01274796ce41aa8e8312e05a427ffb4b0d2148f6</td>\n",
|
118 |
+
" <td>2024-10-25 00:00:55+00:00</td>\n",
|
119 |
+
" <td>quickstart</td>\n",
|
120 |
+
" <td>2024-10-25</td>\n",
|
121 |
+
" <td>non_staking</td>\n",
|
122 |
+
" <td>Oct-25-2024</td>\n",
|
123 |
+
" </tr>\n",
|
124 |
+
" <tr>\n",
|
125 |
+
" <th>4</th>\n",
|
126 |
+
" <td>0xc20678890f94d0162593c46fe5da67d9a4b7a6fb</td>\n",
|
127 |
+
" <td>2024-10-25 00:01:05+00:00</td>\n",
|
128 |
+
" <td>quickstart</td>\n",
|
129 |
+
" <td>2024-10-25</td>\n",
|
130 |
+
" <td>non_staking</td>\n",
|
131 |
+
" <td>Oct-25-2024</td>\n",
|
132 |
+
" </tr>\n",
|
133 |
+
" </tbody>\n",
|
134 |
+
"</table>\n",
|
135 |
+
"</div>"
|
136 |
+
],
|
137 |
+
"text/plain": [
|
138 |
+
" trader_address request_time \\\n",
|
139 |
+
"0 0x721de88cee9be146c8f0c7ef1a4188bee36494d6 2024-10-25 00:00:20+00:00 \n",
|
140 |
+
"1 0x8a1d5f22b5a3bea34697b85e7b4ad894bf9ee36a 2024-10-25 00:00:25+00:00 \n",
|
141 |
+
"2 0xf839eaf4b42eadd917b46d7b6da0dd0e1fd6f684 2024-10-25 00:00:55+00:00 \n",
|
142 |
+
"3 0x01274796ce41aa8e8312e05a427ffb4b0d2148f6 2024-10-25 00:00:55+00:00 \n",
|
143 |
+
"4 0xc20678890f94d0162593c46fe5da67d9a4b7a6fb 2024-10-25 00:01:05+00:00 \n",
|
144 |
+
"\n",
|
145 |
+
" market_creator request_date staking month_year_week \n",
|
146 |
+
"0 quickstart 2024-10-25 non_staking Oct-25-2024 \n",
|
147 |
+
"1 quickstart 2024-10-25 non_staking Oct-25-2024 \n",
|
148 |
+
"2 quickstart 2024-10-25 non_staking Oct-25-2024 \n",
|
149 |
+
"3 quickstart 2024-10-25 non_staking Oct-25-2024 \n",
|
150 |
+
"4 quickstart 2024-10-25 non_staking Oct-25-2024 "
|
151 |
+
]
|
152 |
+
},
|
153 |
+
"execution_count": 13,
|
154 |
+
"metadata": {},
|
155 |
+
"output_type": "execute_result"
|
156 |
+
}
|
157 |
+
],
|
158 |
+
"source": [
|
159 |
+
"retention_df.head()"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": 14,
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [
|
167 |
+
{
|
168 |
+
"data": {
|
169 |
+
"text/plain": [
|
170 |
+
"staking\n",
|
171 |
+
"non_Olas 764956\n",
|
172 |
+
"non_staking 275246\n",
|
173 |
+
"pearl 56487\n",
|
174 |
+
"quickstart 48511\n",
|
175 |
+
"Name: count, dtype: int64"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
"execution_count": 14,
|
179 |
+
"metadata": {},
|
180 |
+
"output_type": "execute_result"
|
181 |
+
}
|
182 |
+
],
|
183 |
+
"source": [
|
184 |
+
"retention_df.staking.value_counts()"
|
185 |
+
]
|
186 |
+
},
|
187 |
{
|
188 |
"cell_type": "markdown",
|
189 |
"metadata": {},
|
scripts/retention_metrics.py
CHANGED
@@ -4,10 +4,13 @@ from scripts.utils import DATA_DIR
|
|
4 |
|
5 |
|
6 |
# Basic Week over Week Retention
|
7 |
-
def calculate_wow_retention_by_type(
|
|
|
|
|
|
|
8 |
# Get unique traders per week and type
|
9 |
weekly_traders = (
|
10 |
-
|
11 |
.nunique()
|
12 |
.reset_index()
|
13 |
)
|
@@ -26,16 +29,16 @@ def calculate_wow_retention_by_type(df: pd.DataFrame) -> pd.DataFrame:
|
|
26 |
|
27 |
# Get traders in both weeks for this type
|
28 |
current_traders = set(
|
29 |
-
|
30 |
-
(
|
31 |
-
& (
|
32 |
]["trader_address"]
|
33 |
)
|
34 |
|
35 |
previous_traders = set(
|
36 |
-
|
37 |
-
(
|
38 |
-
& (
|
39 |
]["trader_address"]
|
40 |
)
|
41 |
|
@@ -60,10 +63,13 @@ def calculate_wow_retention_by_type(df: pd.DataFrame) -> pd.DataFrame:
|
|
60 |
|
61 |
|
62 |
# Cohort Retention
|
63 |
-
def calculate_cohort_retention(
|
|
|
|
|
|
|
64 |
# Get first week for each trader
|
65 |
first_trades = (
|
66 |
-
|
67 |
.agg({"creation_timestamp": "min", "month_year_week": "first"})
|
68 |
.reset_index()
|
69 |
)
|
@@ -111,7 +117,7 @@ def calculate_cohort_retention(df, max_weeks=12) -> pd.DataFrame:
|
|
111 |
return retention_matrix.round(2)
|
112 |
|
113 |
|
114 |
-
def
|
115 |
traders_df: pd.DataFrame, unknown_df: pd.DataFrame
|
116 |
) -> pd.DataFrame:
|
117 |
|
@@ -131,6 +137,33 @@ def prepare_retention_dataset(
|
|
131 |
return all_traders
|
132 |
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
if __name__ == "__main__":
|
135 |
# read all datasets
|
136 |
traders_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
|
|
|
4 |
|
5 |
|
6 |
# Basic Week over Week Retention
|
7 |
+
def calculate_wow_retention_by_type(
|
8 |
+
df: pd.DataFrame, market_creator: str
|
9 |
+
) -> pd.DataFrame:
|
10 |
+
filtered_df = df.loc[df["market_creator"] == market_creator]
|
11 |
# Get unique traders per week and type
|
12 |
weekly_traders = (
|
13 |
+
filtered_df.groupby(["month_year_week", "trader_type"])["trader_address"]
|
14 |
.nunique()
|
15 |
.reset_index()
|
16 |
)
|
|
|
29 |
|
30 |
# Get traders in both weeks for this type
|
31 |
current_traders = set(
|
32 |
+
filtered_df[
|
33 |
+
(filtered_df["month_year_week"] == current_week)
|
34 |
+
& (filtered_df["trader_type"] == trader_type)
|
35 |
]["trader_address"]
|
36 |
)
|
37 |
|
38 |
previous_traders = set(
|
39 |
+
filtered_df[
|
40 |
+
(filtered_df["month_year_week"] == previous_week)
|
41 |
+
& (filtered_df["trader_type"] == trader_type)
|
42 |
]["trader_address"]
|
43 |
)
|
44 |
|
|
|
63 |
|
64 |
|
65 |
# Cohort Retention
|
66 |
+
def calculate_cohort_retention(
|
67 |
+
df: pd.DataFrame, trader_type: str, max_weeks=12
|
68 |
+
) -> pd.DataFrame:
|
69 |
+
df_filtered = df.loc[df["trader_type"] == trader_type]
|
70 |
# Get first week for each trader
|
71 |
first_trades = (
|
72 |
+
df_filtered.groupby("trader_address")
|
73 |
.agg({"creation_timestamp": "min", "month_year_week": "first"})
|
74 |
.reset_index()
|
75 |
)
|
|
|
117 |
return retention_matrix.round(2)
|
118 |
|
119 |
|
120 |
+
def merge_retention_dataset(
|
121 |
traders_df: pd.DataFrame, unknown_df: pd.DataFrame
|
122 |
) -> pd.DataFrame:
|
123 |
|
|
|
137 |
return all_traders
|
138 |
|
139 |
|
140 |
+
def prepare_retention_dataset(
|
141 |
+
retention_df: pd.DataFrame, unknown_df: pd.DataFrame
|
142 |
+
) -> pd.DataFrame:
|
143 |
+
|
144 |
+
retention_df["trader_type"] = retention_df["staking"].apply(
|
145 |
+
lambda x: "non_Olas" if x == "non_Olas" else "Olas"
|
146 |
+
)
|
147 |
+
retention_df.rename(columns={"request_time": "creation_timestamp"}, inplace=True)
|
148 |
+
retention_df = retention_df[
|
149 |
+
["trader_type", "market_creator", "trader_address", "creation_timestamp"]
|
150 |
+
]
|
151 |
+
unknown_df["trader_type"] = "unclassified"
|
152 |
+
unknown_df = unknown_df[
|
153 |
+
["trader_type", "market_creator", "trader_address", "creation_timestamp"]
|
154 |
+
]
|
155 |
+
all_traders = pd.concat([retention_df, unknown_df], ignore_index=True)
|
156 |
+
|
157 |
+
all_traders["creation_timestamp"] = pd.to_datetime(
|
158 |
+
all_traders["creation_timestamp"]
|
159 |
+
)
|
160 |
+
all_traders = all_traders.sort_values(by="creation_timestamp", ascending=True)
|
161 |
+
all_traders["month_year_week"] = (
|
162 |
+
all_traders["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d-%Y")
|
163 |
+
)
|
164 |
+
return all_traders
|
165 |
+
|
166 |
+
|
167 |
if __name__ == "__main__":
|
168 |
# read all datasets
|
169 |
traders_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
|
tabs/retention_plots.py
CHANGED
@@ -53,7 +53,8 @@ def plot_wow_retention_by_type(wow_retention):
|
|
53 |
)
|
54 |
|
55 |
|
56 |
-
def plot_cohort_retention_heatmap(retention_matrix):
|
|
|
57 |
# Create a copy of the matrix to avoid modifying the original
|
58 |
retention_matrix = retention_matrix.copy()
|
59 |
|
|
|
53 |
)
|
54 |
|
55 |
|
56 |
+
def plot_cohort_retention_heatmap(retention_matrix: pd.DataFrame):
|
57 |
+
|
58 |
# Create a copy of the matrix to avoid modifying the original
|
59 |
retention_matrix = retention_matrix.copy()
|
60 |
|