cyberosa commited on
Commit
e91be24
·
1 Parent(s): 87eca50

new weekly data for the traders

Browse files
data/unknown_daily_traders.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1db631b6cc5b6ff1aadd6ce3285dc032fe79c83cd14bb2c1cb1fa7b7917e61b0
3
- size 25139
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1ca416d2d0eeab63185e637d4acbbd0beb6e476a8a8fd33d77bb1b6b5a25e4a
3
+ size 55580
data/unknown_traders.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9be58c1de361e7c9df25ae05c54b77f6a6417e58e19d5d6ef8bd37516da1f70e
3
- size 198407
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c237838416f8339b145719e5b370df1d9763099f9e5fa3e75d4d69053e5d311
3
+ size 200722
data/weekly_mech_calls.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6e321e63d58f312fe2769880d9ec5ec9fba24229e427a514a3a9567936edbab5
3
- size 50009
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcaf2cf4955d8bf73727d2e83aa959fe69b6ac99be801008d724b4810eea9c5f
3
+ size 50599
notebooks/daily_data.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 23,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -11,7 +11,7 @@
11
  },
12
  {
13
  "cell_type": "code",
14
- "execution_count": 24,
15
  "metadata": {},
16
  "outputs": [],
17
  "source": [
@@ -20,7 +20,7 @@
20
  },
21
  {
22
  "cell_type": "code",
23
- "execution_count": 15,
24
  "metadata": {},
25
  "outputs": [
26
  {
@@ -31,11 +31,11 @@
31
  " 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
32
  " 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
33
  " 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
34
- " 'roi', 'staking', 'nr_mech_calls'],\n",
35
  " dtype='object')"
36
  ]
37
  },
38
- "execution_count": 15,
39
  "metadata": {},
40
  "output_type": "execute_result"
41
  }
@@ -44,6 +44,13 @@
44
  "all_trades.columns"
45
  ]
46
  },
 
 
 
 
 
 
 
47
  {
48
  "cell_type": "code",
49
  "execution_count": 32,
@@ -624,7 +631,7 @@
624
  },
625
  {
626
  "cell_type": "code",
627
- "execution_count": 25,
628
  "metadata": {},
629
  "outputs": [],
630
  "source": [
@@ -633,7 +640,7 @@
633
  },
634
  {
635
  "cell_type": "code",
636
- "execution_count": 26,
637
  "metadata": {},
638
  "outputs": [
639
  {
@@ -641,33 +648,33 @@
641
  "output_type": "stream",
642
  "text": [
643
  "<class 'pandas.core.frame.DataFrame'>\n",
644
- "RangeIndex: 9686 entries, 0 to 9685\n",
645
  "Data columns (total 21 columns):\n",
646
  " # Column Non-Null Count Dtype \n",
647
  "--- ------ -------------- ----- \n",
648
- " 0 trader_address 9686 non-null object \n",
649
- " 1 market_creator 9686 non-null object \n",
650
- " 2 trade_id 9686 non-null object \n",
651
- " 3 creation_timestamp 9686 non-null datetime64[ns, UTC]\n",
652
- " 4 title 9686 non-null object \n",
653
- " 5 market_status 9686 non-null object \n",
654
- " 6 collateral_amount 9686 non-null float64 \n",
655
- " 7 outcome_index 9686 non-null object \n",
656
- " 8 trade_fee_amount 9686 non-null float64 \n",
657
- " 9 outcomes_tokens_traded 9686 non-null float64 \n",
658
- " 10 current_answer 671 non-null float64 \n",
659
- " 11 is_invalid 9686 non-null bool \n",
660
- " 12 winning_trade 671 non-null object \n",
661
- " 13 earnings 9686 non-null float64 \n",
662
- " 14 redeemed 9686 non-null bool \n",
663
- " 15 redeemed_amount 9686 non-null int64 \n",
664
- " 16 num_mech_calls 9686 non-null int64 \n",
665
- " 17 mech_fee_amount 9686 non-null float64 \n",
666
- " 18 net_earnings 9686 non-null float64 \n",
667
- " 19 roi 9686 non-null float64 \n",
668
- " 20 staking 9686 non-null object \n",
669
- "dtypes: bool(2), datetime64[ns, UTC](1), float64(8), int64(2), object(8)\n",
670
- "memory usage: 1.4+ MB\n"
671
  ]
672
  }
673
  ],
@@ -703,22 +710,22 @@
703
  },
704
  {
705
  "cell_type": "code",
706
- "execution_count": 28,
707
  "metadata": {},
708
  "outputs": [
709
  {
710
  "data": {
711
  "text/plain": [
712
- "Timestamp('2024-12-02 17:30:05+0000', tz='UTC')"
713
  ]
714
  },
715
- "execution_count": 28,
716
  "metadata": {},
717
  "output_type": "execute_result"
718
  }
719
  ],
720
  "source": [
721
- "max(all_trades_before.creation_timestamp)"
722
  ]
723
  },
724
  {
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
11
  },
12
  {
13
  "cell_type": "code",
14
+ "execution_count": 2,
15
  "metadata": {},
16
  "outputs": [],
17
  "source": [
 
20
  },
21
  {
22
  "cell_type": "code",
23
+ "execution_count": 3,
24
  "metadata": {},
25
  "outputs": [
26
  {
 
31
  " 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
32
  " 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
33
  " 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
34
+ " 'roi', 'staking'],\n",
35
  " dtype='object')"
36
  ]
37
  },
38
+ "execution_count": 3,
39
  "metadata": {},
40
  "output_type": "execute_result"
41
  }
 
44
  "all_trades.columns"
45
  ]
46
  },
47
+ {
48
+ "cell_type": "code",
49
+ "execution_count": null,
50
+ "metadata": {},
51
+ "outputs": [],
52
+ "source": []
53
+ },
54
  {
55
  "cell_type": "code",
56
  "execution_count": 32,
 
631
  },
632
  {
633
  "cell_type": "code",
634
+ "execution_count": 4,
635
  "metadata": {},
636
  "outputs": [],
637
  "source": [
 
640
  },
641
  {
642
  "cell_type": "code",
643
+ "execution_count": 5,
644
  "metadata": {},
645
  "outputs": [
646
  {
 
648
  "output_type": "stream",
649
  "text": [
650
  "<class 'pandas.core.frame.DataFrame'>\n",
651
+ "RangeIndex: 7104 entries, 0 to 7103\n",
652
  "Data columns (total 21 columns):\n",
653
  " # Column Non-Null Count Dtype \n",
654
  "--- ------ -------------- ----- \n",
655
+ " 0 trader_address 7104 non-null object \n",
656
+ " 1 market_creator 7104 non-null object \n",
657
+ " 2 trade_id 7104 non-null object \n",
658
+ " 3 creation_timestamp 7104 non-null datetime64[ns, UTC]\n",
659
+ " 4 title 7104 non-null object \n",
660
+ " 5 market_status 7104 non-null object \n",
661
+ " 6 collateral_amount 7104 non-null float64 \n",
662
+ " 7 outcome_index 7104 non-null object \n",
663
+ " 8 trade_fee_amount 7104 non-null float64 \n",
664
+ " 9 outcomes_tokens_traded 7104 non-null float64 \n",
665
+ " 10 current_answer 0 non-null object \n",
666
+ " 11 is_invalid 7104 non-null bool \n",
667
+ " 12 winning_trade 0 non-null object \n",
668
+ " 13 earnings 7104 non-null float64 \n",
669
+ " 14 redeemed 7104 non-null bool \n",
670
+ " 15 redeemed_amount 7104 non-null float64 \n",
671
+ " 16 num_mech_calls 7104 non-null int64 \n",
672
+ " 17 mech_fee_amount 7104 non-null float64 \n",
673
+ " 18 net_earnings 7104 non-null float64 \n",
674
+ " 19 roi 7104 non-null float64 \n",
675
+ " 20 staking 7104 non-null object \n",
676
+ "dtypes: bool(2), datetime64[ns, UTC](1), float64(8), int64(1), object(9)\n",
677
+ "memory usage: 1.0+ MB\n"
678
  ]
679
  }
680
  ],
 
710
  },
711
  {
712
  "cell_type": "code",
713
+ "execution_count": 7,
714
  "metadata": {},
715
  "outputs": [
716
  {
717
  "data": {
718
  "text/plain": [
719
+ "Timestamp('2025-01-07 09:01:05+0000', tz='UTC')"
720
  ]
721
  },
722
+ "execution_count": 7,
723
  "metadata": {},
724
  "output_type": "execute_result"
725
  }
726
  ],
727
  "source": [
728
+ "min(all_trades_before.creation_timestamp)"
729
  ]
730
  },
731
  {
notebooks/divergence.ipynb CHANGED
@@ -9,7 +9,7 @@
9
  "name": "stderr",
10
  "output_type": "stream",
11
  "text": [
12
- "/Users/cyberosa/.pyenv/versions/hf_dashboards/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
13
  " from .autonotebook import tqdm as notebook_tqdm\n"
14
  ]
15
  }
@@ -26,13 +26,167 @@
26
  },
27
  {
28
  "cell_type": "code",
29
- "execution_count": 2,
30
  "metadata": {},
31
  "outputs": [],
32
  "source": [
33
  "div_data = pd.read_parquet(\"../data/closed_markets_div.parquet\")"
34
  ]
35
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  {
37
  "cell_type": "code",
38
  "execution_count": 8,
 
9
  "name": "stderr",
10
  "output_type": "stream",
11
  "text": [
12
+ "/Users/cyberosa/.pyenv/versions/3.12.2/envs/hf_dashboards/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
13
  " from .autonotebook import tqdm as notebook_tqdm\n"
14
  ]
15
  }
 
26
  },
27
  {
28
  "cell_type": "code",
29
+ "execution_count": 3,
30
  "metadata": {},
31
  "outputs": [],
32
  "source": [
33
  "div_data = pd.read_parquet(\"../data/closed_markets_div.parquet\")"
34
  ]
35
  },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": 4,
39
+ "metadata": {},
40
+ "outputs": [
41
+ {
42
+ "data": {
43
+ "text/html": [
44
+ "<div>\n",
45
+ "<style scoped>\n",
46
+ " .dataframe tbody tr th:only-of-type {\n",
47
+ " vertical-align: middle;\n",
48
+ " }\n",
49
+ "\n",
50
+ " .dataframe tbody tr th {\n",
51
+ " vertical-align: top;\n",
52
+ " }\n",
53
+ "\n",
54
+ " .dataframe thead th {\n",
55
+ " text-align: right;\n",
56
+ " }\n",
57
+ "</style>\n",
58
+ "<table border=\"1\" class=\"dataframe\">\n",
59
+ " <thead>\n",
60
+ " <tr style=\"text-align: right;\">\n",
61
+ " <th></th>\n",
62
+ " <th>currentAnswer</th>\n",
63
+ " <th>id</th>\n",
64
+ " <th>openingTimestamp</th>\n",
65
+ " <th>market_creator</th>\n",
66
+ " <th>opening_datetime</th>\n",
67
+ " <th>first_outcome_prob</th>\n",
68
+ " <th>second_outcome_prob</th>\n",
69
+ " <th>kl_divergence</th>\n",
70
+ " <th>off_by_perc</th>\n",
71
+ " </tr>\n",
72
+ " </thead>\n",
73
+ " <tbody>\n",
74
+ " <tr>\n",
75
+ " <th>0</th>\n",
76
+ " <td>yes</td>\n",
77
+ " <td>0x5cae41dcc8a30d76a31b126c6f3b358b8d0131ca</td>\n",
78
+ " <td>1731542400</td>\n",
79
+ " <td>quickstart</td>\n",
80
+ " <td>2024-11-14 01:00:00</td>\n",
81
+ " <td>0.3679</td>\n",
82
+ " <td>0.6321</td>\n",
83
+ " <td>0.999944</td>\n",
84
+ " <td>63.21</td>\n",
85
+ " </tr>\n",
86
+ " <tr>\n",
87
+ " <th>1</th>\n",
88
+ " <td>yes</td>\n",
89
+ " <td>0xf8442bd26cd80d8447bb6203ededc44a77cd2a12</td>\n",
90
+ " <td>1731542400</td>\n",
91
+ " <td>quickstart</td>\n",
92
+ " <td>2024-11-14 01:00:00</td>\n",
93
+ " <td>0.3368</td>\n",
94
+ " <td>0.6632</td>\n",
95
+ " <td>1.088266</td>\n",
96
+ " <td>66.32</td>\n",
97
+ " </tr>\n",
98
+ " <tr>\n",
99
+ " <th>2</th>\n",
100
+ " <td>yes</td>\n",
101
+ " <td>0xde3a4b0d527013165b1b6b8aae051d223f8b770e</td>\n",
102
+ " <td>1731542400</td>\n",
103
+ " <td>quickstart</td>\n",
104
+ " <td>2024-11-14 01:00:00</td>\n",
105
+ " <td>0.4468</td>\n",
106
+ " <td>0.5532</td>\n",
107
+ " <td>0.805644</td>\n",
108
+ " <td>55.32</td>\n",
109
+ " </tr>\n",
110
+ " <tr>\n",
111
+ " <th>3</th>\n",
112
+ " <td>yes</td>\n",
113
+ " <td>0xccadef7757659ce271b209d647c2a51fabd88c77</td>\n",
114
+ " <td>1731542400</td>\n",
115
+ " <td>quickstart</td>\n",
116
+ " <td>2024-11-14 01:00:00</td>\n",
117
+ " <td>0.6804</td>\n",
118
+ " <td>0.3196</td>\n",
119
+ " <td>0.385074</td>\n",
120
+ " <td>31.96</td>\n",
121
+ " </tr>\n",
122
+ " <tr>\n",
123
+ " <th>4</th>\n",
124
+ " <td>no</td>\n",
125
+ " <td>0x78d0fc5884e74d87b0529e40da2b9490db60e731</td>\n",
126
+ " <td>1731628800</td>\n",
127
+ " <td>quickstart</td>\n",
128
+ " <td>2024-11-15 01:00:00</td>\n",
129
+ " <td>0.2358</td>\n",
130
+ " <td>0.7642</td>\n",
131
+ " <td>0.268926</td>\n",
132
+ " <td>23.58</td>\n",
133
+ " </tr>\n",
134
+ " </tbody>\n",
135
+ "</table>\n",
136
+ "</div>"
137
+ ],
138
+ "text/plain": [
139
+ " currentAnswer id openingTimestamp \\\n",
140
+ "0 yes 0x5cae41dcc8a30d76a31b126c6f3b358b8d0131ca 1731542400 \n",
141
+ "1 yes 0xf8442bd26cd80d8447bb6203ededc44a77cd2a12 1731542400 \n",
142
+ "2 yes 0xde3a4b0d527013165b1b6b8aae051d223f8b770e 1731542400 \n",
143
+ "3 yes 0xccadef7757659ce271b209d647c2a51fabd88c77 1731542400 \n",
144
+ "4 no 0x78d0fc5884e74d87b0529e40da2b9490db60e731 1731628800 \n",
145
+ "\n",
146
+ " market_creator opening_datetime first_outcome_prob second_outcome_prob \\\n",
147
+ "0 quickstart 2024-11-14 01:00:00 0.3679 0.6321 \n",
148
+ "1 quickstart 2024-11-14 01:00:00 0.3368 0.6632 \n",
149
+ "2 quickstart 2024-11-14 01:00:00 0.4468 0.5532 \n",
150
+ "3 quickstart 2024-11-14 01:00:00 0.6804 0.3196 \n",
151
+ "4 quickstart 2024-11-15 01:00:00 0.2358 0.7642 \n",
152
+ "\n",
153
+ " kl_divergence off_by_perc \n",
154
+ "0 0.999944 63.21 \n",
155
+ "1 1.088266 66.32 \n",
156
+ "2 0.805644 55.32 \n",
157
+ "3 0.385074 31.96 \n",
158
+ "4 0.268926 23.58 "
159
+ ]
160
+ },
161
+ "execution_count": 4,
162
+ "metadata": {},
163
+ "output_type": "execute_result"
164
+ }
165
+ ],
166
+ "source": [
167
+ "div_data.head()"
168
+ ]
169
+ },
170
+ {
171
+ "cell_type": "code",
172
+ "execution_count": 5,
173
+ "metadata": {},
174
+ "outputs": [
175
+ {
176
+ "data": {
177
+ "text/plain": [
178
+ "Timestamp('2024-12-28 01:00:00')"
179
+ ]
180
+ },
181
+ "execution_count": 5,
182
+ "metadata": {},
183
+ "output_type": "execute_result"
184
+ }
185
+ ],
186
+ "source": [
187
+ "max(div_data.opening_datetime)"
188
+ ]
189
+ },
190
  {
191
  "cell_type": "code",
192
  "execution_count": 8,
notebooks/wow_retention.ipynb ADDED
The diff for this file is too large to render. See raw diff