cyberosa
commited on
Commit
·
e91be24
1
Parent(s):
87eca50
new weekly data for the traders
Browse files- data/unknown_daily_traders.parquet +2 -2
- data/unknown_traders.parquet +2 -2
- data/weekly_mech_calls.parquet +2 -2
- notebooks/daily_data.ipynb +42 -35
- notebooks/divergence.ipynb +156 -2
- notebooks/wow_retention.ipynb +0 -0
data/unknown_daily_traders.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1ca416d2d0eeab63185e637d4acbbd0beb6e476a8a8fd33d77bb1b6b5a25e4a
|
3 |
+
size 55580
|
data/unknown_traders.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c237838416f8339b145719e5b370df1d9763099f9e5fa3e75d4d69053e5d311
|
3 |
+
size 200722
|
data/weekly_mech_calls.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcaf2cf4955d8bf73727d2e83aa959fe69b6ac99be801008d724b4810eea9c5f
|
3 |
+
size 50599
|
notebooks/daily_data.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -11,7 +11,7 @@
|
|
11 |
},
|
12 |
{
|
13 |
"cell_type": "code",
|
14 |
-
"execution_count":
|
15 |
"metadata": {},
|
16 |
"outputs": [],
|
17 |
"source": [
|
@@ -20,7 +20,7 @@
|
|
20 |
},
|
21 |
{
|
22 |
"cell_type": "code",
|
23 |
-
"execution_count":
|
24 |
"metadata": {},
|
25 |
"outputs": [
|
26 |
{
|
@@ -31,11 +31,11 @@
|
|
31 |
" 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
|
32 |
" 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
|
33 |
" 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
|
34 |
-
" 'roi', 'staking'
|
35 |
" dtype='object')"
|
36 |
]
|
37 |
},
|
38 |
-
"execution_count":
|
39 |
"metadata": {},
|
40 |
"output_type": "execute_result"
|
41 |
}
|
@@ -44,6 +44,13 @@
|
|
44 |
"all_trades.columns"
|
45 |
]
|
46 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
{
|
48 |
"cell_type": "code",
|
49 |
"execution_count": 32,
|
@@ -624,7 +631,7 @@
|
|
624 |
},
|
625 |
{
|
626 |
"cell_type": "code",
|
627 |
-
"execution_count":
|
628 |
"metadata": {},
|
629 |
"outputs": [],
|
630 |
"source": [
|
@@ -633,7 +640,7 @@
|
|
633 |
},
|
634 |
{
|
635 |
"cell_type": "code",
|
636 |
-
"execution_count":
|
637 |
"metadata": {},
|
638 |
"outputs": [
|
639 |
{
|
@@ -641,33 +648,33 @@
|
|
641 |
"output_type": "stream",
|
642 |
"text": [
|
643 |
"<class 'pandas.core.frame.DataFrame'>\n",
|
644 |
-
"RangeIndex:
|
645 |
"Data columns (total 21 columns):\n",
|
646 |
" # Column Non-Null Count Dtype \n",
|
647 |
"--- ------ -------------- ----- \n",
|
648 |
-
" 0 trader_address
|
649 |
-
" 1 market_creator
|
650 |
-
" 2 trade_id
|
651 |
-
" 3 creation_timestamp
|
652 |
-
" 4 title
|
653 |
-
" 5 market_status
|
654 |
-
" 6 collateral_amount
|
655 |
-
" 7 outcome_index
|
656 |
-
" 8 trade_fee_amount
|
657 |
-
" 9 outcomes_tokens_traded
|
658 |
-
" 10 current_answer
|
659 |
-
" 11 is_invalid
|
660 |
-
" 12 winning_trade
|
661 |
-
" 13 earnings
|
662 |
-
" 14 redeemed
|
663 |
-
" 15 redeemed_amount
|
664 |
-
" 16 num_mech_calls
|
665 |
-
" 17 mech_fee_amount
|
666 |
-
" 18 net_earnings
|
667 |
-
" 19 roi
|
668 |
-
" 20 staking
|
669 |
-
"dtypes: bool(2), datetime64[ns, UTC](1), float64(8), int64(
|
670 |
-
"memory usage: 1.
|
671 |
]
|
672 |
}
|
673 |
],
|
@@ -703,22 +710,22 @@
|
|
703 |
},
|
704 |
{
|
705 |
"cell_type": "code",
|
706 |
-
"execution_count":
|
707 |
"metadata": {},
|
708 |
"outputs": [
|
709 |
{
|
710 |
"data": {
|
711 |
"text/plain": [
|
712 |
-
"Timestamp('
|
713 |
]
|
714 |
},
|
715 |
-
"execution_count":
|
716 |
"metadata": {},
|
717 |
"output_type": "execute_result"
|
718 |
}
|
719 |
],
|
720 |
"source": [
|
721 |
-
"
|
722 |
]
|
723 |
},
|
724 |
{
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
11 |
},
|
12 |
{
|
13 |
"cell_type": "code",
|
14 |
+
"execution_count": 2,
|
15 |
"metadata": {},
|
16 |
"outputs": [],
|
17 |
"source": [
|
|
|
20 |
},
|
21 |
{
|
22 |
"cell_type": "code",
|
23 |
+
"execution_count": 3,
|
24 |
"metadata": {},
|
25 |
"outputs": [
|
26 |
{
|
|
|
31 |
" 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
|
32 |
" 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
|
33 |
" 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
|
34 |
+
" 'roi', 'staking'],\n",
|
35 |
" dtype='object')"
|
36 |
]
|
37 |
},
|
38 |
+
"execution_count": 3,
|
39 |
"metadata": {},
|
40 |
"output_type": "execute_result"
|
41 |
}
|
|
|
44 |
"all_trades.columns"
|
45 |
]
|
46 |
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": null,
|
50 |
+
"metadata": {},
|
51 |
+
"outputs": [],
|
52 |
+
"source": []
|
53 |
+
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
"execution_count": 32,
|
|
|
631 |
},
|
632 |
{
|
633 |
"cell_type": "code",
|
634 |
+
"execution_count": 4,
|
635 |
"metadata": {},
|
636 |
"outputs": [],
|
637 |
"source": [
|
|
|
640 |
},
|
641 |
{
|
642 |
"cell_type": "code",
|
643 |
+
"execution_count": 5,
|
644 |
"metadata": {},
|
645 |
"outputs": [
|
646 |
{
|
|
|
648 |
"output_type": "stream",
|
649 |
"text": [
|
650 |
"<class 'pandas.core.frame.DataFrame'>\n",
|
651 |
+
"RangeIndex: 7104 entries, 0 to 7103\n",
|
652 |
"Data columns (total 21 columns):\n",
|
653 |
" # Column Non-Null Count Dtype \n",
|
654 |
"--- ------ -------------- ----- \n",
|
655 |
+
" 0 trader_address 7104 non-null object \n",
|
656 |
+
" 1 market_creator 7104 non-null object \n",
|
657 |
+
" 2 trade_id 7104 non-null object \n",
|
658 |
+
" 3 creation_timestamp 7104 non-null datetime64[ns, UTC]\n",
|
659 |
+
" 4 title 7104 non-null object \n",
|
660 |
+
" 5 market_status 7104 non-null object \n",
|
661 |
+
" 6 collateral_amount 7104 non-null float64 \n",
|
662 |
+
" 7 outcome_index 7104 non-null object \n",
|
663 |
+
" 8 trade_fee_amount 7104 non-null float64 \n",
|
664 |
+
" 9 outcomes_tokens_traded 7104 non-null float64 \n",
|
665 |
+
" 10 current_answer 0 non-null object \n",
|
666 |
+
" 11 is_invalid 7104 non-null bool \n",
|
667 |
+
" 12 winning_trade 0 non-null object \n",
|
668 |
+
" 13 earnings 7104 non-null float64 \n",
|
669 |
+
" 14 redeemed 7104 non-null bool \n",
|
670 |
+
" 15 redeemed_amount 7104 non-null float64 \n",
|
671 |
+
" 16 num_mech_calls 7104 non-null int64 \n",
|
672 |
+
" 17 mech_fee_amount 7104 non-null float64 \n",
|
673 |
+
" 18 net_earnings 7104 non-null float64 \n",
|
674 |
+
" 19 roi 7104 non-null float64 \n",
|
675 |
+
" 20 staking 7104 non-null object \n",
|
676 |
+
"dtypes: bool(2), datetime64[ns, UTC](1), float64(8), int64(1), object(9)\n",
|
677 |
+
"memory usage: 1.0+ MB\n"
|
678 |
]
|
679 |
}
|
680 |
],
|
|
|
710 |
},
|
711 |
{
|
712 |
"cell_type": "code",
|
713 |
+
"execution_count": 7,
|
714 |
"metadata": {},
|
715 |
"outputs": [
|
716 |
{
|
717 |
"data": {
|
718 |
"text/plain": [
|
719 |
+
"Timestamp('2025-01-07 09:01:05+0000', tz='UTC')"
|
720 |
]
|
721 |
},
|
722 |
+
"execution_count": 7,
|
723 |
"metadata": {},
|
724 |
"output_type": "execute_result"
|
725 |
}
|
726 |
],
|
727 |
"source": [
|
728 |
+
"min(all_trades_before.creation_timestamp)"
|
729 |
]
|
730 |
},
|
731 |
{
|
notebooks/divergence.ipynb
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
"name": "stderr",
|
10 |
"output_type": "stream",
|
11 |
"text": [
|
12 |
-
"/Users/cyberosa/.pyenv/versions/hf_dashboards/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
13 |
" from .autonotebook import tqdm as notebook_tqdm\n"
|
14 |
]
|
15 |
}
|
@@ -26,13 +26,167 @@
|
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
-
"execution_count":
|
30 |
"metadata": {},
|
31 |
"outputs": [],
|
32 |
"source": [
|
33 |
"div_data = pd.read_parquet(\"../data/closed_markets_div.parquet\")"
|
34 |
]
|
35 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
{
|
37 |
"cell_type": "code",
|
38 |
"execution_count": 8,
|
|
|
9 |
"name": "stderr",
|
10 |
"output_type": "stream",
|
11 |
"text": [
|
12 |
+
"/Users/cyberosa/.pyenv/versions/3.12.2/envs/hf_dashboards/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
13 |
" from .autonotebook import tqdm as notebook_tqdm\n"
|
14 |
]
|
15 |
}
|
|
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
+
"execution_count": 3,
|
30 |
"metadata": {},
|
31 |
"outputs": [],
|
32 |
"source": [
|
33 |
"div_data = pd.read_parquet(\"../data/closed_markets_div.parquet\")"
|
34 |
]
|
35 |
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 4,
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [
|
41 |
+
{
|
42 |
+
"data": {
|
43 |
+
"text/html": [
|
44 |
+
"<div>\n",
|
45 |
+
"<style scoped>\n",
|
46 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
47 |
+
" vertical-align: middle;\n",
|
48 |
+
" }\n",
|
49 |
+
"\n",
|
50 |
+
" .dataframe tbody tr th {\n",
|
51 |
+
" vertical-align: top;\n",
|
52 |
+
" }\n",
|
53 |
+
"\n",
|
54 |
+
" .dataframe thead th {\n",
|
55 |
+
" text-align: right;\n",
|
56 |
+
" }\n",
|
57 |
+
"</style>\n",
|
58 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
59 |
+
" <thead>\n",
|
60 |
+
" <tr style=\"text-align: right;\">\n",
|
61 |
+
" <th></th>\n",
|
62 |
+
" <th>currentAnswer</th>\n",
|
63 |
+
" <th>id</th>\n",
|
64 |
+
" <th>openingTimestamp</th>\n",
|
65 |
+
" <th>market_creator</th>\n",
|
66 |
+
" <th>opening_datetime</th>\n",
|
67 |
+
" <th>first_outcome_prob</th>\n",
|
68 |
+
" <th>second_outcome_prob</th>\n",
|
69 |
+
" <th>kl_divergence</th>\n",
|
70 |
+
" <th>off_by_perc</th>\n",
|
71 |
+
" </tr>\n",
|
72 |
+
" </thead>\n",
|
73 |
+
" <tbody>\n",
|
74 |
+
" <tr>\n",
|
75 |
+
" <th>0</th>\n",
|
76 |
+
" <td>yes</td>\n",
|
77 |
+
" <td>0x5cae41dcc8a30d76a31b126c6f3b358b8d0131ca</td>\n",
|
78 |
+
" <td>1731542400</td>\n",
|
79 |
+
" <td>quickstart</td>\n",
|
80 |
+
" <td>2024-11-14 01:00:00</td>\n",
|
81 |
+
" <td>0.3679</td>\n",
|
82 |
+
" <td>0.6321</td>\n",
|
83 |
+
" <td>0.999944</td>\n",
|
84 |
+
" <td>63.21</td>\n",
|
85 |
+
" </tr>\n",
|
86 |
+
" <tr>\n",
|
87 |
+
" <th>1</th>\n",
|
88 |
+
" <td>yes</td>\n",
|
89 |
+
" <td>0xf8442bd26cd80d8447bb6203ededc44a77cd2a12</td>\n",
|
90 |
+
" <td>1731542400</td>\n",
|
91 |
+
" <td>quickstart</td>\n",
|
92 |
+
" <td>2024-11-14 01:00:00</td>\n",
|
93 |
+
" <td>0.3368</td>\n",
|
94 |
+
" <td>0.6632</td>\n",
|
95 |
+
" <td>1.088266</td>\n",
|
96 |
+
" <td>66.32</td>\n",
|
97 |
+
" </tr>\n",
|
98 |
+
" <tr>\n",
|
99 |
+
" <th>2</th>\n",
|
100 |
+
" <td>yes</td>\n",
|
101 |
+
" <td>0xde3a4b0d527013165b1b6b8aae051d223f8b770e</td>\n",
|
102 |
+
" <td>1731542400</td>\n",
|
103 |
+
" <td>quickstart</td>\n",
|
104 |
+
" <td>2024-11-14 01:00:00</td>\n",
|
105 |
+
" <td>0.4468</td>\n",
|
106 |
+
" <td>0.5532</td>\n",
|
107 |
+
" <td>0.805644</td>\n",
|
108 |
+
" <td>55.32</td>\n",
|
109 |
+
" </tr>\n",
|
110 |
+
" <tr>\n",
|
111 |
+
" <th>3</th>\n",
|
112 |
+
" <td>yes</td>\n",
|
113 |
+
" <td>0xccadef7757659ce271b209d647c2a51fabd88c77</td>\n",
|
114 |
+
" <td>1731542400</td>\n",
|
115 |
+
" <td>quickstart</td>\n",
|
116 |
+
" <td>2024-11-14 01:00:00</td>\n",
|
117 |
+
" <td>0.6804</td>\n",
|
118 |
+
" <td>0.3196</td>\n",
|
119 |
+
" <td>0.385074</td>\n",
|
120 |
+
" <td>31.96</td>\n",
|
121 |
+
" </tr>\n",
|
122 |
+
" <tr>\n",
|
123 |
+
" <th>4</th>\n",
|
124 |
+
" <td>no</td>\n",
|
125 |
+
" <td>0x78d0fc5884e74d87b0529e40da2b9490db60e731</td>\n",
|
126 |
+
" <td>1731628800</td>\n",
|
127 |
+
" <td>quickstart</td>\n",
|
128 |
+
" <td>2024-11-15 01:00:00</td>\n",
|
129 |
+
" <td>0.2358</td>\n",
|
130 |
+
" <td>0.7642</td>\n",
|
131 |
+
" <td>0.268926</td>\n",
|
132 |
+
" <td>23.58</td>\n",
|
133 |
+
" </tr>\n",
|
134 |
+
" </tbody>\n",
|
135 |
+
"</table>\n",
|
136 |
+
"</div>"
|
137 |
+
],
|
138 |
+
"text/plain": [
|
139 |
+
" currentAnswer id openingTimestamp \\\n",
|
140 |
+
"0 yes 0x5cae41dcc8a30d76a31b126c6f3b358b8d0131ca 1731542400 \n",
|
141 |
+
"1 yes 0xf8442bd26cd80d8447bb6203ededc44a77cd2a12 1731542400 \n",
|
142 |
+
"2 yes 0xde3a4b0d527013165b1b6b8aae051d223f8b770e 1731542400 \n",
|
143 |
+
"3 yes 0xccadef7757659ce271b209d647c2a51fabd88c77 1731542400 \n",
|
144 |
+
"4 no 0x78d0fc5884e74d87b0529e40da2b9490db60e731 1731628800 \n",
|
145 |
+
"\n",
|
146 |
+
" market_creator opening_datetime first_outcome_prob second_outcome_prob \\\n",
|
147 |
+
"0 quickstart 2024-11-14 01:00:00 0.3679 0.6321 \n",
|
148 |
+
"1 quickstart 2024-11-14 01:00:00 0.3368 0.6632 \n",
|
149 |
+
"2 quickstart 2024-11-14 01:00:00 0.4468 0.5532 \n",
|
150 |
+
"3 quickstart 2024-11-14 01:00:00 0.6804 0.3196 \n",
|
151 |
+
"4 quickstart 2024-11-15 01:00:00 0.2358 0.7642 \n",
|
152 |
+
"\n",
|
153 |
+
" kl_divergence off_by_perc \n",
|
154 |
+
"0 0.999944 63.21 \n",
|
155 |
+
"1 1.088266 66.32 \n",
|
156 |
+
"2 0.805644 55.32 \n",
|
157 |
+
"3 0.385074 31.96 \n",
|
158 |
+
"4 0.268926 23.58 "
|
159 |
+
]
|
160 |
+
},
|
161 |
+
"execution_count": 4,
|
162 |
+
"metadata": {},
|
163 |
+
"output_type": "execute_result"
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"div_data.head()"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": 5,
|
173 |
+
"metadata": {},
|
174 |
+
"outputs": [
|
175 |
+
{
|
176 |
+
"data": {
|
177 |
+
"text/plain": [
|
178 |
+
"Timestamp('2024-12-28 01:00:00')"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
"execution_count": 5,
|
182 |
+
"metadata": {},
|
183 |
+
"output_type": "execute_result"
|
184 |
+
}
|
185 |
+
],
|
186 |
+
"source": [
|
187 |
+
"max(div_data.opening_datetime)"
|
188 |
+
]
|
189 |
+
},
|
190 |
{
|
191 |
"cell_type": "code",
|
192 |
"execution_count": 8,
|
notebooks/wow_retention.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|