import pandas as pd import gradio as gr import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import matplotlib.pyplot as plt import seaborn as sns def plot_kl_div_per_market(closed_markets: pd.DataFrame) -> gr.Plot: # adding the total all_markets = closed_markets.copy(deep=True) all_markets["market_creator"] = "all" # merging both dataframes final_markets = pd.concat([closed_markets, all_markets], ignore_index=True) final_markets = final_markets.sort_values(by="opening_datetime", ascending=True) fig = px.box( final_markets, x="month_year_week", y="kl_divergence", color="market_creator", color_discrete_sequence=["purple", "goldenrod", "darkgreen"], category_orders={"market_creator": ["pearl", "quickstart", "all"]}, ) fig.update_traces(boxmean=True) fig.update_layout( xaxis_title="Markets closing Week", yaxis_title="Kullback–Leibler divergence", legend=dict(yanchor="top", y=0.5), width=800, # Adjusted for better fit on laptop screens height=600, # Adjusted for better fit on laptop screens ) fig.update_xaxes(tickformat="%b %d\n%Y") return gr.Plot( value=fig, ) def plot_kl_div_with_off_by(closed_markets: pd.DataFrame) -> gr.Plot: # adding the total all_markets = closed_markets.copy(deep=True) all_markets["market_creator"] = "all" # merging both dataframes final_markets = pd.concat([closed_markets, all_markets], ignore_index=True) final_markets = final_markets.sort_values(by="opening_datetime", ascending=True) # Create the main figure and axis fig, ax1 = plt.subplots(figsize=(10, 6)) # Create the boxplot using seaborn sns.boxplot( data=final_markets, x="month_year_week", y="kl_divergence", ax=ax1, hue="market_creator", ) # Set labels and title for the main axis ax1.set_xlabel("Week") ax1.set_ylabel("KL Divergence") ax1.set_title("KL Divergence Boxplot with Off-by Percentage") # Create a secondary y-axis ax2 = ax1.twinx() # Plot the off_by_perc values on the secondary y-axis for i, week in enumerate(closed_markets["month_year_week"].unique()): off_by_perc = closed_markets[closed_markets["month_year_week"] == week][ "off_by_perc" ] ax2.scatter([i] * len(off_by_perc), off_by_perc, color="red", alpha=0.01) # Set label for the secondary y-axis ax2.set_ylabel("Off-by Percentage") # Adjust the layout and display the plot plt.tight_layout() return gr.Plot( value=fig, ) def plot_total_bet_amount(trades_df: pd.DataFrame) -> gr.Plot: """Plots the trade metrics.""" # Create binary staking category trades_df["trader_type"] = trades_df["staking"].apply( lambda x: "non_agent" if x == "non_agent" else "agent" ) total_bet_amount = ( trades_df.groupby( ["month_year_week", "market_creator", "trader_type"], sort=False )["collateral_amount"] .sum() .reset_index(name="total_bet_amount") ) color_mapping = [ "darkviolet", "purple", "goldenrod", "darkgoldenrod", "green", "darkgreen", ] total_bet_amount["trader_market"] = total_bet_amount.apply( lambda x: (x["trader_type"], x["market_creator"]), axis=1 ) fig = px.bar( total_bet_amount, x="month_year_week", y="total_bet_amount", color="trader_market", color_discrete_sequence=color_mapping, category_orders={ "market_creator": ["pearl", "quickstart", "all"], "trader_market": [ ("agent", "pearl"), ("non_agent", "pearl"), ("agent", "quickstart"), ("non_agent", "quickstart"), ("agent", "all"), ("non_agent", "all"), ], }, barmode="group", facet_col="market_creator", ) fig.update_layout( xaxis_title="Week", yaxis_title="Weekly total bet amount", legend=dict(yanchor="top", y=0.5), ) for axis in fig.layout: if axis.startswith("xaxis"): fig.layout[axis].update(title="Week") fig.update_xaxes(tickformat="%b %d") return gr.Plot( value=fig, )