{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import gc" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "weekly_mech_calls = pd.read_parquet(\"../data/weekly_mech_calls.parquet\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "tools = pd.read_parquet(\"../tmp/tools.parquet\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "fpmmTrades = pd.read_parquet(\"../data/fpmmTrades.parquet\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['request_id', 'request_block', 'prompt_request', 'tool', 'nonce',\n", " 'trader_address', 'deliver_block', 'error', 'error_message',\n", " 'prompt_response', 'mech_address', 'p_yes', 'p_no', 'confidence',\n", " 'info_utility', 'vote', 'win_probability', 'market_creator', 'title',\n", " 'currentAnswer', 'request_time', 'request_month_year',\n", " 'request_month_year_week'],\n", " dtype='object')" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tools.columns" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
trader_addressmonth_year_weektotal_tradestotal_mech_calls
00x358e58683e54b2b1b0536727df52a001df5acdf8Nov-03345
10x358e58683e54b2b1b0536727df52a001df5acdf8Nov-101033
20x358e58683e54b2b1b0536727df52a001df5acdf8Nov-171022
30x358e58683e54b2b1b0536727df52a001df5acdf8Nov-243540
40x358e58683e54b2b1b0536727df52a001df5acdf8Dec-01611
\n", "
" ], "text/plain": [ " trader_address month_year_week total_trades \\\n", "0 0x358e58683e54b2b1b0536727df52a001df5acdf8 Nov-03 3 \n", "1 0x358e58683e54b2b1b0536727df52a001df5acdf8 Nov-10 10 \n", "2 0x358e58683e54b2b1b0536727df52a001df5acdf8 Nov-17 10 \n", "3 0x358e58683e54b2b1b0536727df52a001df5acdf8 Nov-24 35 \n", "4 0x358e58683e54b2b1b0536727df52a001df5acdf8 Dec-01 6 \n", "\n", " total_mech_calls \n", "0 45 \n", "1 33 \n", "2 22 \n", "3 40 \n", "4 11 " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "weekly_mech_calls.head()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
trader_addressmonth_year_weektotal_tradestotal_mech_calls
75730x5992ba3c19482e899521a0422132895d97a12f0cDec-0100
75740x5992ba3c19482e899521a0422132895d97a12f0cDec-0800
75750x5992ba3c19482e899521a0422132895d97a12f0cDec-1500
75760x5992ba3c19482e899521a0422132895d97a12f0cDec-2200
75770x5992ba3c19482e899521a0422132895d97a12f0cDec-29121
\n", "
" ], "text/plain": [ " trader_address month_year_week \\\n", "7573 0x5992ba3c19482e899521a0422132895d97a12f0c Dec-01 \n", "7574 0x5992ba3c19482e899521a0422132895d97a12f0c Dec-08 \n", "7575 0x5992ba3c19482e899521a0422132895d97a12f0c Dec-15 \n", "7576 0x5992ba3c19482e899521a0422132895d97a12f0c Dec-22 \n", "7577 0x5992ba3c19482e899521a0422132895d97a12f0c Dec-29 \n", "\n", " total_trades total_mech_calls \n", "7573 0 0 \n", "7574 0 0 \n", "7575 0 0 \n", "7576 0 0 \n", "7577 1 21 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "weekly_mech_calls.tail()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 7578.000000\n", "mean 106.832014\n", "std 157.655569\n", "min 0.000000\n", "25% 0.000000\n", "50% 12.000000\n", "75% 244.000000\n", "max 795.000000\n", "Name: total_mech_calls, dtype: float64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "weekly_mech_calls.total_mech_calls.describe()" ] } ], "metadata": { "kernelspec": { "display_name": "hf_dashboards", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }