Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,900 Bytes
5135378 4694efc 5135378 4694efc 5135378 5f01196 8e89298 5f01196 8e89298 5f01196 5135378 5f01196 5135378 4694efc 5135378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import logging
import os
import sys
from pathlib import Path
from typing import Annotated, TypedDict
import requests
import streamlit as st
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_core.prompts import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
)
from langchain_core.tools import Tool
from langchain_openai import ChatOpenAI
from langgraph.graph.message import add_messages
sys.path.append(str(Path(__file__).parent))
from dotenv import load_dotenv
# Now import from app.src
from app.src.embedding.model import EmbeddingModel
from app.src.rag.chain import RAGChain
from app.src.rag.document_loader import GridCodeLoader
from app.src.rag.vectorstore import VectorStore
# Load .env file from base directory
load_dotenv(Path(__file__).parent / ".env")
logger = logging.getLogger(__name__)
def get_secrets():
"""Get secrets from environment variables."""
# Skip trying Streamlit secrets and go straight to environment variables
return {
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY"),
"LANGCHAIN_API_KEY": os.getenv("LANGCHAIN_API_KEY"),
"LANGCHAIN_PROJECT": os.getenv("LANGCHAIN_PROJECT", "GridGuide"),
"LANGCHAIN_TRACING_V2": os.getenv("LANGCHAIN_TRACING_V2", "true"),
}
# Set up environment variables from secrets
secrets = get_secrets()
for key, value in secrets.items():
if value:
os.environ[key] = value
# Verify API keys without showing warning
if not os.getenv("OPENAI_API_KEY"):
st.error("OpenAI API key not found. Please check your .env file.")
st.stop()
class WeatherTool:
def __init__(self):
self.base_url = "https://api.weather.gov"
self.headers = {
"User-Agent": "(Grid Code Assistant, [email protected])",
"Accept": "application/json",
}
def get_coordinates_from_zip(self, zipcode):
response = requests.get(f"https://api.zippopotam.us/us/{zipcode}")
if response.status_code == 200:
data = response.json()
return {
"lat": data["places"][0]["latitude"],
"lon": data["places"][0]["longitude"],
"place": data["places"][0]["place name"],
"state": data["places"][0]["state"],
}
return None
def run(self, zipcode):
coords = self.get_coordinates_from_zip(zipcode)
if not coords:
return {"error": "Invalid ZIP code or unable to get coordinates."}
point_url = f"{self.base_url}/points/{coords['lat']},{coords['lon']}"
response = requests.get(point_url, headers=self.headers)
if response.status_code != 200:
return {"error": "Unable to fetch weather data."}
grid_data = response.json()
forecast_url = grid_data["properties"]["forecast"]
response = requests.get(forecast_url, headers=self.headers)
if response.status_code == 200:
forecast_data = response.json()["properties"]["periods"]
weather_data = {
"type": "weather",
"location": f"{coords['place']}, {coords['state']}",
"current": forecast_data[0],
"forecast": forecast_data[1:4],
}
# Save to session state
st.session_state.weather_data = weather_data
return weather_data
return {"error": "Unable to fetch forecast data."}
def initialize_rag():
"""Initialize RAG system."""
if "rag_chain" in st.session_state:
logger.info("Using cached RAG chain from session state")
return st.session_state.rag_chain
# Try multiple possible paths for the PDF
possible_paths = [
"Grid_Code.pdf", # Base directory (local and Docker)
"/app/Grid_Code.pdf", # Docker container path
Path(__file__).parent / "Grid_Code.pdf", # Absolute path
]
data_path = None
for path in possible_paths:
if isinstance(path, str):
path = Path(path)
logger.info(f"Checking path: {path}")
if path.exists():
data_path = str(path)
logger.info(f"Found PDF at: {data_path}")
break
if not data_path:
raise FileNotFoundError(
f"PDF not found in any of these locations: {possible_paths}"
)
with st.spinner("Loading Grid Code documents..."):
loader = GridCodeLoader(data_path, pages=17)
documents = loader.load_and_split()
logger.info(f"Loaded {len(documents)} document chunks")
with st.spinner("Creating vector store..."):
embedding_model = EmbeddingModel()
vectorstore = VectorStore(embedding_model)
vectorstore = vectorstore.create_vectorstore(documents)
logger.info("Vector store created successfully")
# Cache the RAG chain in session state
rag_chain = RAGChain(vectorstore)
st.session_state.rag_chain = rag_chain
return rag_chain
class RAGTool:
def __init__(self, rag_chain):
self.rag_chain = rag_chain
def run(self, question: str) -> str:
"""Answer questions using the Grid Code."""
response = self.rag_chain.invoke(question)
return response["answer"]
class AgentState(TypedDict):
"""State definition for the agent."""
messages: Annotated[list, add_messages]
def create_agent_workflow(rag_chain, weather_tool):
"""Create an agent that can use both RAG and weather tools."""
# Define the tools
tools = [
Tool(
name="grid_code_query",
description="Answer questions about the Grid Code and electrical regulations",
func=lambda q: rag_chain.invoke(q)["answer"],
),
Tool(
name="get_weather",
description="Get weather forecast for a ZIP code. Input should be a 5-digit ZIP code.",
func=lambda z: weather_tool.run(z),
),
]
# Initialize the LLM
llm = ChatOpenAI(model="gpt-4o", temperature=0)
# Create the custom prompt
prompt = ChatPromptTemplate.from_messages(
[
SystemMessagePromptTemplate.from_template(
"""You are a helpful assistant that specializes in two areas:
1. Answering questions about electrical Grid Code regulations
2. Providing weather information for specific locations
For weather queries:
- Extract the ZIP code from the question
- Use the get_weather tool to fetch the forecast
For Grid Code questions:
- Use the grid_code_query tool to find relevant information
- If the information isn't in the Grid Code, clearly state that
- Provide specific references when possible
"""
),
MessagesPlaceholder(variable_name="chat_history", optional=True),
HumanMessagePromptTemplate.from_template("{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
# Create the agent
agent = create_tool_calling_agent(llm, tools, prompt)
return AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
handle_parsing_errors=True,
)
def display_weather(weather_data):
"""Display weather information in a nice format"""
if "error" in weather_data:
st.error(weather_data["error"])
return
if weather_data.get("type") == "weather":
# Location header
st.header(f"Weather for {weather_data['location']}")
# Current conditions
current = weather_data["current"]
st.subheader("Current Conditions")
# Use columns for current weather layout
col1, col2 = st.columns(2)
with col1:
# Temperature display with metric
st.metric(
"Temperature", f"{current['temperature']}Β°{current['temperatureUnit']}"
)
# Wind information
st.info(f"π¨ Wind: {current['windSpeed']} {current['windDirection']}")
with col2:
# Current forecast
st.markdown(f"**π€οΈ Conditions:** {current['shortForecast']}")
st.markdown(f"**π Details:** {current['detailedForecast']}")
# Extended forecast
st.subheader("Extended Forecast")
for period in weather_data["forecast"]:
with st.expander(f"π
{period['name']}"):
st.markdown(
f"**π‘οΈ Temperature:** {period['temperature']}Β°{period['temperatureUnit']}"
)
st.markdown(
f"**π¨ Wind:** {period['windSpeed']} {period['windDirection']}"
)
st.markdown(f"**π€οΈ Forecast:** {period['shortForecast']}")
st.markdown(f"**π Details:** {period['detailedForecast']}")
def main():
st.title("GridGuide: Field Assistant")
# Initialize if not in session state
if "app" not in st.session_state:
rag_chain = initialize_rag()
weather_tool = WeatherTool()
st.session_state.app = create_agent_workflow(rag_chain, weather_tool)
# Create the input box
user_input = st.text_input("Ask about weather or the Grid Code:")
if user_input:
with st.spinner("Processing your request..."):
# Invoke the agent executor
result = st.session_state.app.invoke({"input": user_input})
# Check if we have weather data in session state
if "weather_data" in st.session_state:
display_weather(st.session_state.weather_data)
# Clear the weather data after displaying
del st.session_state.weather_data
else:
st.write(result["output"])
if __name__ == "__main__":
main()
|