import logging import os from langchain_community.vectorstores import Qdrant logger = logging.getLogger(__name__) class VectorStore: def __init__(self, embedding_model): self.embedding_model = embedding_model self.collection_name = "grid_code" def create_vectorstore(self, documents): """Create vector store.""" logger.info("Creating vector store...") vectorstore = Qdrant.from_documents( documents=documents, embedding=self.embedding_model.model, location=":memory:", # Use in-memory storage collection_name=self.collection_name, ) logger.info(f"Created vector store with {len(documents)} chunks") return vectorstore def similarity_search(self, query, k=4): raise NotImplementedError("Use the Qdrant vectorstore instance directly")