Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import shutil | |
import numpy as np | |
import gradio as gr | |
from huggingface_hub import Repository, HfApi | |
from transformers import AutoConfig | |
import json | |
from apscheduler.schedulers.background import BackgroundScheduler | |
import pandas as pd | |
import datetime | |
# clone / pull the lmeh eval data | |
H4_TOKEN = os.environ.get("H4_TOKEN", None) | |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations" | |
repo=None | |
if H4_TOKEN: | |
print("pulling repo") | |
# try: | |
# shutil.rmtree("./evals/") | |
# except: | |
# pass | |
repo = Repository( | |
local_dir="./evals/", clone_from=LMEH_REPO, use_auth_token=H4_TOKEN, repo_type="dataset" | |
) | |
repo.git_pull() | |
# parse the results | |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"] | |
BENCH_TO_NAME = { | |
"arc_challenge":"ARC (25-shot) ⬆️", | |
"hellaswag":"HellaSwag (10-shot) ⬆️", | |
"hendrycks":"MMLU (5-shot) ⬆️", | |
"truthfulqa_mc":"TruthQA (0-shot) ⬆️", | |
} | |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"] | |
def make_clickable_model(model_name): | |
# remove user from model name | |
#model_name_show = ' '.join(model_name.split('/')[1:]) | |
link = "https://huggingface.co/" + model_name | |
return f'<a target="_blank" href="{link}" style="color: blue; text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
def load_results(model, benchmark, metric): | |
file_path = os.path.join("evals", model, f"{model}-eval_{benchmark}.json") | |
if not os.path.exists(file_path): | |
return 0.0, None | |
with open(file_path) as fp: | |
data = json.load(fp) | |
accs = np.array([v[metric] for k, v in data["results"].items()]) | |
mean_acc = np.mean(accs) | |
return mean_acc, data["config"]["model_args"] | |
def get_n_params(base_model): | |
# config = AutoConfig.from_pretrained(model_name) | |
# # Retrieve the number of parameters from the configuration | |
# try: | |
# num_params = config.n_parameters | |
# except AttributeError: | |
# print(f"Error: The number of parameters is not available in the config for the model '{model_name}'.") | |
# return None | |
# return num_params | |
now = datetime.datetime.now() | |
time_string = now.strftime("%Y-%m-%d %H:%M:%S") | |
return time_string | |
COLS = ["eval_name", "# params", "total ⬆️", "ARC (25-shot) ⬆️", "HellaSwag (10-shot) ⬆️", "MMLU (5-shot) ⬆️", "TruthQA (0-shot) ⬆️", "base_model"] | |
TYPES = ["str","str", "number", "number", "number", "number", "number","markdown", ] | |
EVAL_COLS = ["model","# params", "private", "8bit_eval", "is_delta_weight", "status"] | |
EVAL_TYPES = ["markdown","str", "bool", "bool", "bool", "str"] | |
def get_leaderboard(): | |
if repo: | |
print("pulling changes") | |
repo.git_pull() | |
entries = [entry for entry in os.listdir("evals") if not (entry.startswith('.') or entry=="eval_requests")] | |
model_directories = [entry for entry in entries if os.path.isdir(os.path.join("evals", entry))] | |
all_data = [] | |
for model in model_directories: | |
model_data = {"base_model": None} | |
model_data = {"eval_name": model} | |
for benchmark, metric in zip(BENCHMARKS, METRICS): | |
value, base_model = load_results(model, benchmark, metric) | |
model_data[BENCH_TO_NAME[benchmark]] = round(value,3) | |
if base_model is not None: # in case the last benchmark failed | |
model_data["base_model"] = base_model | |
model_data["total ⬆️"] = round(sum(model_data[benchmark] for benchmark in BENCH_TO_NAME.values()),3) | |
if model_data["base_model"] is not None: | |
model_data["base_model"] = make_clickable_model(model_data["base_model"]) | |
model_data["# params"] = get_n_params(model_data["base_model"]) | |
all_data.append(model_data) | |
dataframe = pd.DataFrame.from_records(all_data) | |
dataframe = dataframe.sort_values(by=['total ⬆️'], ascending=False) | |
dataframe = dataframe[COLS] | |
return dataframe | |
def get_eval_table(): | |
if repo: | |
print("pulling changes for eval") | |
repo.git_pull() | |
entries = [entry for entry in os.listdir("evals/eval_requests") if not entry.startswith('.')] | |
all_evals = [] | |
for entry in entries: | |
print(entry) | |
if ".json"in entry: | |
file_path = os.path.join("evals/eval_requests", entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data["# params"] = get_n_params(data["model"]) | |
data["model"] = make_clickable_model(data["model"]) | |
all_evals.append(data) | |
else: | |
# this is a folder | |
sub_entries = [e for e in os.listdir(f"evals/eval_requests/{entry}") if not e.startswith('.')] | |
for sub_entry in sub_entries: | |
file_path = os.path.join("evals/eval_requests", entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data["# params"] = get_n_params(data["model"]) | |
data["model"] = make_clickable_model(data["model"]) | |
all_evals.append(data) | |
dataframe = pd.DataFrame.from_records(all_evals) | |
return dataframe[EVAL_COLS] | |
leaderboard = get_leaderboard() | |
eval_queue = get_eval_table() | |
def is_model_on_hub(model_name) -> bool: | |
try: | |
config = AutoConfig.from_pretrained(model_name) | |
return True | |
except Exception as e: | |
print("Could not get the model config from the hub") | |
print(e) | |
return False | |
def add_new_eval(model:str, private:bool, is_8_bit_eval: bool, is_delta_weight:bool): | |
# check the model actually exists before adding the eval | |
if not is_model_on_hub(model): | |
print(model, "not found on hub") | |
return | |
print("adding new eval") | |
eval_entry = { | |
"model" : model, | |
"private" : private, | |
"8bit_eval" : is_8_bit_eval, | |
"is_delta_weight" : is_delta_weight, | |
"status" : "PENDING" | |
} | |
user_name = "" | |
model_path = model | |
if "/" in model: | |
user_name = model.split("/")[0] | |
model_path = model.split("/")[1] | |
OUT_DIR=f"eval_requests/{user_name}" | |
os.makedirs(OUT_DIR, exist_ok=True) | |
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{is_8_bit_eval}_{is_delta_weight}.json" | |
with open(out_path, "w") as f: | |
f.write(json.dumps(eval_entry)) | |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations" | |
api = HfApi() | |
api.upload_file( | |
path_or_fileobj=out_path, | |
path_in_repo=out_path, | |
repo_id=LMEH_REPO, | |
token=H4_TOKEN, | |
repo_type="dataset", | |
) | |
def refresh(): | |
return get_leaderboard(), get_eval_table() | |
block = gr.Blocks() | |
with block: | |
with gr.Row(): | |
gr.Markdown(f""" | |
# 🤗 H4 Model Evaluation leaderboard using the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> LMEH benchmark suite </a>. | |
Evaluation is performed against 4 popular benchmarks AI2 Reasoning Challenge, HellaSwag, MMLU, and TruthFul QC MC. To run your own benchmarks, refer to the README in the H4 repo. | |
""") | |
with gr.Row(): | |
leaderboard_table = gr.components.Dataframe(value=leaderboard, headers=COLS, | |
datatype=TYPES, max_rows=5) | |
with gr.Row(): | |
gr.Markdown(f""" | |
# Evaluation Queue for the LMEH benchmarks, these models will be automatically evaluated on the 🤗 cluster | |
""") | |
with gr.Row(): | |
eval_table = gr.components.Dataframe(value=eval_queue, headers=EVAL_COLS, | |
datatype=EVAL_TYPES, max_rows=5) | |
with gr.Row(): | |
refresh_button = gr.Button("Refresh") | |
refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table, eval_table]) | |
with gr.Accordion("Submit a new model for evaluation"): | |
# with gr.Row(): | |
# gr.Markdown(f"""# Submit a new model for evaluation""") | |
with gr.Row(): | |
model_name_textbox = gr.Textbox(label="model_name") | |
is_8bit_toggle = gr.Checkbox(False, label="8 bit Eval?") | |
private = gr.Checkbox(False, label="Private?") | |
is_delta_weight = gr.Checkbox(False, label="Delta Weights?") | |
with gr.Row(): | |
submit_button = gr.Button("Submit Eval") | |
submit_button.click(add_new_eval, [model_name_textbox, is_8bit_toggle, private, is_delta_weight]) | |
print("adding refresh leaderboard") | |
def refresh_leaderboard(): | |
leaderboard_table = get_leaderboard() | |
print("leaderboard updated") | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=300) # refresh every 5 mins | |
scheduler.start() | |
block.launch() |