Spaces:
Sleeping
Sleeping
Upload 8 files
Browse files- app.py +163 -0
- dataset.py +82 -0
- model.py +36 -0
- stage2_adaptor/README.md +204 -0
- stage2_adaptor/adapter_config.json +31 -0
- stage2_adaptor/adapter_model.safetensors +3 -0
- stage_2_proj_head_v3.pth +3 -0
app.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import AutoTokenizer, pipeline
|
7 |
+
from transformers import AutoModelForCausalLM
|
8 |
+
from torchvision import transforms
|
9 |
+
from transformers import CLIPProcessor, CLIPModel
|
10 |
+
|
11 |
+
from model import build_mlp_vector_projector
|
12 |
+
|
13 |
+
|
14 |
+
device = "cpu"
|
15 |
+
# Load the CLIP model and processor
|
16 |
+
clip_model_name = "openai/clip-vit-base-patch16"
|
17 |
+
clip_model = CLIPModel.from_pretrained(clip_model_name).to(device)
|
18 |
+
clip_processor = CLIPProcessor.from_pretrained(clip_model_name)
|
19 |
+
|
20 |
+
clip_transform = transforms.Compose(
|
21 |
+
[
|
22 |
+
transforms.Resize((224, 224)),
|
23 |
+
transforms.ToTensor()
|
24 |
+
]
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def process_image(img_path):
|
29 |
+
image = Image.open(img_path).convert("RGB")
|
30 |
+
image = clip_transform(image)
|
31 |
+
inputs = clip_processor(text=[""], images=image,
|
32 |
+
return_tensors="pt", padding=True)
|
33 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
34 |
+
img_embedding = clip_model(**inputs).image_embeds
|
35 |
+
img_proj_head = build_mlp_vector_projector().to(device)
|
36 |
+
img_proj_head.load_state_dict(torch.load(
|
37 |
+
'stage_2_proj_head_v3.pth', map_location=torch.device(device)))
|
38 |
+
img_tokens = img_proj_head(img_embedding)
|
39 |
+
return img_tokens
|
40 |
+
|
41 |
+
|
42 |
+
phi_model_name = "microsoft/phi-2"
|
43 |
+
text_tokenizer = AutoTokenizer.from_pretrained(
|
44 |
+
phi_model_name, trust_remote_code=True)
|
45 |
+
with torch.no_grad():
|
46 |
+
tuned_phi2 = AutoModelForCausalLM.from_pretrained(
|
47 |
+
"stage2_adaptor", trust_remote_code=True,
|
48 |
+
device=device, torch_dtype=torch.float16
|
49 |
+
)
|
50 |
+
base_phi2_text = AutoModelForCausalLM.from_pretrained(
|
51 |
+
phi_model_name, trust_remote_code=True,
|
52 |
+
device_map="auto", torch_dtype=torch.float16
|
53 |
+
)
|
54 |
+
print("phi2 model loaded")
|
55 |
+
|
56 |
+
audio_model_name = "openai/whisper-small"
|
57 |
+
audio_pipe = pipeline(
|
58 |
+
task="automatic-speech-recognition",
|
59 |
+
model=audio_model_name,
|
60 |
+
chunk_length_s=30,
|
61 |
+
device=device)
|
62 |
+
|
63 |
+
|
64 |
+
def process_text(text, count):
|
65 |
+
inputs = text_tokenizer(text, return_tensors="pt",
|
66 |
+
return_attention_mask=False)
|
67 |
+
prediction = text_tokenizer.batch_decode(
|
68 |
+
base_phi2_text.generate(
|
69 |
+
**inputs,
|
70 |
+
max_new_tokens=count,
|
71 |
+
bos_token_id=text_tokenizer.bos_token_id,
|
72 |
+
eos_token_id=text_tokenizer.eos_token_id,
|
73 |
+
pad_token_id=text_tokenizer.pad_token_id
|
74 |
+
)
|
75 |
+
)
|
76 |
+
return prediction[0].rstrip('<|endoftext|>').rstrip("\n")
|
77 |
+
|
78 |
+
|
79 |
+
def process_audio(audio):
|
80 |
+
if audio is None:
|
81 |
+
raise gr.Error(
|
82 |
+
"Please provide an audio file or record your input"
|
83 |
+
)
|
84 |
+
|
85 |
+
text = audio_pipe(
|
86 |
+
audio,
|
87 |
+
batch_size=8,
|
88 |
+
generate_kwargs={"task": "transcribe"},
|
89 |
+
return_timestamps=True
|
90 |
+
)["text"]
|
91 |
+
return text
|
92 |
+
|
93 |
+
|
94 |
+
def generate_response(image, audio, text, count):
|
95 |
+
count = int(count)
|
96 |
+
if audio:
|
97 |
+
text_from_audio = process_audio(audio)
|
98 |
+
if text:
|
99 |
+
overall_input = text + text_from_audio
|
100 |
+
if image:
|
101 |
+
img_tokens = process_image(image)
|
102 |
+
q_tokens = text_tokenizer.encode(
|
103 |
+
overall_input,
|
104 |
+
return_tensors='pt').to(device)
|
105 |
+
question_token_embeddings = base_phi2_text.get_submodule(
|
106 |
+
'model.embed_tokens')(q_tokens).to(device)
|
107 |
+
inputs = torch.concat(
|
108 |
+
(img_tokens.unsqueeze(0), question_token_embeddings),
|
109 |
+
axis=-2).to(device)
|
110 |
+
prediction = text_tokenizer.batch_decode(
|
111 |
+
tuned_phi2.generate(
|
112 |
+
inputs_embeds=inputs,
|
113 |
+
max_new_tokens=30,
|
114 |
+
bos_token_id=text_tokenizer.bos_token_id,
|
115 |
+
eos_token_id=text_tokenizer.eos_token_id,
|
116 |
+
pad_token_id=text_tokenizer.pad_token_id
|
117 |
+
)
|
118 |
+
)
|
119 |
+
return prediction[0].rstrip('<|endoftext|>').rstrip("\n")
|
120 |
+
else:
|
121 |
+
return process_text(overall_input, count)
|
122 |
+
|
123 |
+
return prediction[0].strip('<|endoftext|>').rstrip("\n")
|
124 |
+
|
125 |
+
|
126 |
+
with gr.Blocks() as demo:
|
127 |
+
gr.Markdown("# **AnyModeAssistant**")
|
128 |
+
gr.Markdown("Use any mode text/image/audio to interact with AI assistant")
|
129 |
+
with gr.Column():
|
130 |
+
with gr.Row("Text"):
|
131 |
+
text_input = gr.Textbox(placeholder="Enter your question here",
|
132 |
+
label="Input")
|
133 |
+
with gr.Row():
|
134 |
+
image_input = gr.Image(type="filepath")
|
135 |
+
|
136 |
+
with gr.Row("Audio mode"):
|
137 |
+
audio_input = gr.Audio(type="filepath")
|
138 |
+
|
139 |
+
with gr.Row("Image"):
|
140 |
+
response_count = gr.Textbox(
|
141 |
+
placeholder="Number of tokens to respond",
|
142 |
+
defualt=20,
|
143 |
+
label="Count")
|
144 |
+
with gr.Column():
|
145 |
+
response = gr.Textbox(label="AI Response")
|
146 |
+
with gr.Row():
|
147 |
+
submit_button = gr.Button("Submit")
|
148 |
+
submit_button.click(generate_response,
|
149 |
+
inputs=[text_input, response_count,
|
150 |
+
image_input, audio_input],
|
151 |
+
outputs=response)
|
152 |
+
|
153 |
+
# gr.Examples(
|
154 |
+
# examples=[
|
155 |
+
# ["What is a large language model?", "50"]
|
156 |
+
# ],
|
157 |
+
# # , image_input, image_text_input, audio_input],
|
158 |
+
# inputs=[text_input, text_input_count],
|
159 |
+
# outputs=[text_output], # , image_text_output, audio_text_output],
|
160 |
+
# fn=example_inference,
|
161 |
+
# )
|
162 |
+
|
163 |
+
demo.launch()
|
dataset.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from transformers import AutoTokenizer, AutoConfig
|
5 |
+
import json
|
6 |
+
from torch.utils.data import Dataset, DataLoader
|
7 |
+
|
8 |
+
instruct_dataset = f'./llava_instruct_150k.json'
|
9 |
+
with open(instruct_dataset, 'r') as f:
|
10 |
+
instruct_data = json.load(f)
|
11 |
+
|
12 |
+
class CustomTextDataset(Dataset):
|
13 |
+
def __init__(self, json_data, image_embedding_dict, tokenizer, maxContext=512):
|
14 |
+
self.image_embedding_dict = image_embedding_dict
|
15 |
+
self.tokenizer = tokenizer
|
16 |
+
self.json_data = json_data
|
17 |
+
self.maxContext = maxContext
|
18 |
+
self.entries = []
|
19 |
+
for entry in json_data:
|
20 |
+
image = entry['image']
|
21 |
+
image_embedding = self.getEmbeddingForImage(image)
|
22 |
+
if image_embedding is None:
|
23 |
+
continue
|
24 |
+
|
25 |
+
conversations = entry['conversations']
|
26 |
+
for i in range(len(conversations)):
|
27 |
+
if conversations[i]['from'] == 'human':
|
28 |
+
if len(conversations[i]['value'] + conversations[i + 1]['value']) > 512:
|
29 |
+
continue
|
30 |
+
question = 'Question: ' + conversations[i]['value'].lstrip('<image>\n')
|
31 |
+
answer = 'Answer: ' + conversations[i + 1]['value']
|
32 |
+
self.entries.append({
|
33 |
+
'image_name': image,
|
34 |
+
'image_embedding': image_embedding,
|
35 |
+
'Question': question,
|
36 |
+
'Answer': answer,
|
37 |
+
'QnAText': question + answer
|
38 |
+
})
|
39 |
+
print('------------- num entries = -----------------')
|
40 |
+
print(len(self.entries))
|
41 |
+
|
42 |
+
def getEmbeddingForImage(self, image):
|
43 |
+
if image in self.image_embedding_dict:
|
44 |
+
image_embedding = self.image_embedding_dict[image]
|
45 |
+
return image_embedding
|
46 |
+
else:
|
47 |
+
return None
|
48 |
+
|
49 |
+
def __len__(self):
|
50 |
+
return len(self.entries)
|
51 |
+
|
52 |
+
def __getitem__(self, idx):
|
53 |
+
entry = self.entries[idx]
|
54 |
+
image_name = entry['image_name']
|
55 |
+
Q_caption_tokens = tokenizer.encode(entry['Question'], add_special_tokens=True)
|
56 |
+
QnA_captions_tokens = tokenizer.encode(entry['QnAText'], add_special_tokens=True)
|
57 |
+
QTokensLength = len(Q_caption_tokens)
|
58 |
+
QnA_length = len(QnA_captions_tokens)
|
59 |
+
|
60 |
+
|
61 |
+
QnA_captions_tokens = QnA_captions_tokens + \
|
62 |
+
[tokenizer.pad_token_id] * (self.maxContext - len(QnA_captions_tokens))
|
63 |
+
|
64 |
+
return {'image_name': entry['image_name'],
|
65 |
+
'QText': entry['Question'],
|
66 |
+
'AText': entry['Answer'],
|
67 |
+
'image_embedding': entry['image_embedding'].to("cuda"),
|
68 |
+
'QnA_tokens': torch.tensor(QnA_captions_tokens),
|
69 |
+
'QTokensLength': QTokensLength,
|
70 |
+
'QnA_length': QnA_length
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
imgEmbDict = torch.load('img_embeddings_dict.pth')
|
76 |
+
|
77 |
+
model_name = "microsoft/phi-2"
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
79 |
+
tokenizer.pad_token = tokenizer.eos_token
|
80 |
+
|
81 |
+
custom_dataset = CustomTextDataset(instruct_data, imgEmbDict, tokenizer)
|
82 |
+
custom_dataloader = DataLoader(custom_dataset, batch_size=10, shuffle=True)
|
model.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from transformers import AutoTokenizer, AutoConfig
|
5 |
+
|
6 |
+
class _MLPVectorProjector(nn.Module):
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
input_hidden_size: int = 512,
|
10 |
+
lm_hidden_size: int = 2560,
|
11 |
+
num_layers: int = 1,
|
12 |
+
width: int = 4
|
13 |
+
):
|
14 |
+
super(_MLPVectorProjector, self).__init__()
|
15 |
+
self.mlps = nn.ModuleList()
|
16 |
+
for _ in range(width):
|
17 |
+
mlp = [nn.Linear(input_hidden_size, lm_hidden_size, bias=False)]
|
18 |
+
for _ in range(1, num_layers):
|
19 |
+
mlp.append(nn.GELU())
|
20 |
+
mlp.append(nn.Linear(lm_hidden_size, lm_hidden_size, bias=False))
|
21 |
+
self.mlps.append(nn.Sequential(*mlp))
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
return torch.cat([mlp(x) for mlp in self.mlps], dim=-2)
|
25 |
+
|
26 |
+
|
27 |
+
def build_mlp_vector_projector(
|
28 |
+
input_hidden_size: int = 512,
|
29 |
+
lm_hidden_size: int = 2560,
|
30 |
+
num_layers: int = 1,
|
31 |
+
num_tokens: int = 4
|
32 |
+
):
|
33 |
+
return _MLPVectorProjector(
|
34 |
+
input_hidden_size, lm_hidden_size, num_layers, num_tokens
|
35 |
+
)
|
36 |
+
|
stage2_adaptor/README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: microsoft/phi-2
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.7.1
|
stage2_adaptor/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": {
|
4 |
+
"base_model_class": "PhiForCausalLM",
|
5 |
+
"parent_library": "transformers_modules.microsoft.phi-2.cb02e3efd822d6dbc1ca7e0dff31c29a11550411.modeling_phi"
|
6 |
+
},
|
7 |
+
"base_model_name_or_path": "microsoft/phi-2",
|
8 |
+
"bias": "none",
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 16,
|
16 |
+
"lora_dropout": 0.1,
|
17 |
+
"megatron_config": null,
|
18 |
+
"megatron_core": "megatron.core",
|
19 |
+
"modules_to_save": null,
|
20 |
+
"peft_type": "LORA",
|
21 |
+
"r": 64,
|
22 |
+
"rank_pattern": {},
|
23 |
+
"revision": null,
|
24 |
+
"target_modules": [
|
25 |
+
"fc2",
|
26 |
+
"fc1",
|
27 |
+
"out_proj",
|
28 |
+
"Wqkv"
|
29 |
+
],
|
30 |
+
"task_type": null
|
31 |
+
}
|
stage2_adaptor/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef13f8dac86c856f0ec2c6847f6a0b058b2387bba0b896b89b7cd2cc835b5965
|
3 |
+
size 209731504
|
stage_2_proj_head_v3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d7cb2049e9e62b633caacc5311380e55b842c4c51f23755546ec6490f93f119
|
3 |
+
size 20973485
|