File size: 3,849 Bytes
07ebfb1
 
 
 
 
 
5b11f8b
07ebfb1
 
 
 
 
 
 
 
6351056
ad6cbd0
07ebfb1
5b11f8b
769dbd6
84d6345
983c638
 
 
 
 
 
602514f
 
 
 
 
071a764
769dbd6
07ebfb1
6a3ae5e
 
 
 
 
 
 
 
 
 
 
 
c1541fb
07ebfb1
 
 
 
 
 
 
 
 
 
 
6a3ae5e
07ebfb1
 
 
 
 
3d53725
07ebfb1
 
 
 
 
 
 
 
 
0c101e3
ad19622
07ebfb1
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3ae5e
 
ad19622
6a3ae5e
ad19622
07ebfb1
 
 
 
 
 
 
 
 
 
 
 
 
 
459ad15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os

import torch

import gradio as gr
import pytube as pt
import spaces
from transformers import pipeline
from huggingface_hub import model_info

MODEL_NAME = "NbAiLab/whisper-large-sme" #this always needs to stay in line 8 :D sorry for the hackiness
lang = "fi"

share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
auth_token = os.environ.get("AUTH_TOKEN") or True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

@spaces.GPU(duration=120)
def pipe(file, return_timestamps=False):
    asr = pipeline(
        task="automatic-speech-recognition",
        model=MODEL_NAME,
        chunk_length_s=30,
        device=device,
        token=auth_token,
    )
    asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids(
        language=lang,
        task="transcribe",
        no_timestamps=not return_timestamps,
    )
    # asr.model.config.no_timestamps_token_id = asr.tokenizer.encode("<|notimestamps|>", add_special_tokens=False)[0]
    return asr(file, return_timestamps=return_timestamps)

def transcribe(file, return_timestamps=False):
    if not return_timestamps:
        text = pipe(file)["text"]
    else:
        chunks = pipe(file, return_timestamps=True)["chunks"]
        text = []
        for chunk in chunks:
            start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
            end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??"
            line = f"[{start_time} -> {end_time}] {chunk['text']}"
            text.append(line)
        text = "\n".join(text)
    return text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def yt_transcribe(yt_url, return_timestamps=False):
    yt = pt.YouTube(yt_url)
    html_embed_str = _return_yt_html_embed(yt_url)
    stream = yt.streams.filter(only_audio=True)[0]
    stream.download(filename="audio.mp3")

    text = transcribe("audio.mp3", return_timestamps=return_timestamps)

    return html_embed_str, text


demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
        # gr.components.Checkbox(label="Return timestamps"),
    ],
    outputs="text",
    theme="huggingface",
    title="Whisper Demo: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        # gr.components.Checkbox(label="Return timestamps"),
    ],
    examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]],
    outputs=["html", "text"],
    theme="huggingface",
    title="Whisper Demo: Transcribe YouTube",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
        f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
        " arbitrary length."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])

demo.launch(share=True).queue()