Spaces:
Sleeping
Sleeping
import gradio | |
import argparse | |
import os | |
from utils import generate | |
from models import get_tiny_llama, response_tiny_llama | |
from constants import css, js_code, js_light | |
MERA_table = None | |
TINY_LLAMA = get_tiny_llama() | |
def giga_gen(content): | |
res = generate(content,'auth_token.json') | |
return res | |
def tiny_gen(content): | |
res = response_tiny_llama(TINY_LLAMA, content) | |
return res | |
def tab_arena(): | |
with gradio.Row(): | |
with gradio.Column(): | |
gradio.Interface(fn=giga_gen, inputs="text", outputs="text", allow_flagging=False, title='Giga') # arena = | |
with gradio.Column(): | |
gradio.Interface(fn=tiny_gen, inputs="text", outputs="text", allow_flagging=False, title='TinyLlama') # arena = | |
# arena.launch() | |
with open("test.md", "r") as f: | |
TEST_MD = f.read() | |
available_models = ["GigaChat", ""] # list(model_info.keys()) | |
def build_demo(): | |
# global original_dfs, available_models, gpt4t_dfs, haiku_dfs, llama_dfs | |
with gradio.Blocks(theme=gradio.themes.Base(), css=css, js=js_light) as demo: | |
# gradio.HTML(BANNER, elem_id="banner") | |
# gradio.Markdown(HEADER_MD.replace("{model_num}", str(len(original_dfs["-1"]))), elem_classes="markdown-text") | |
with gradio.Tabs(elem_classes="tab-buttons") as tabs: | |
with gradio.TabItem("πΌ MERA leaderboard", elem_id="od-benchmark-tab-table", id=0): | |
gradio.Markdown(TEST_MD, elem_classes="markdown-text-details") | |
# _tab_leaderboard() | |
with gradio.TabItem("π SBS by categories and criteria", elem_id="od-benchmark-tab-table", id=1): | |
gradio.Markdown(TEST_MD, elem_classes="markdown-text-details") | |
with gradio.TabItem("π₯ Model arena", elem_id="od-benchmark-tab-table", id=2): | |
tab_arena() | |
# _tab_explore() | |
with gradio.TabItem("πͺ About MERA", elem_id="od-benchmark-tab-table", id=3): | |
gradio.Markdown(TEST_MD, elem_classes="markdown-text") | |
# gr.Markdown(f"Last updated on **{LAST_UPDATED}** | [Link to V1-legacy](https://huggingface.co/spaces/allenai/WildBench-V1-legacy)", elem_classes="markdown-text-small") | |
# with gr.Row(): | |
# with gr.Accordion("π Citation", open=False, elem_classes="accordion-label"): | |
# gr.Textbox( | |
# value=CITATION_TEXT, | |
# lines=7, | |
# label="Copy the BibTeX snippet to cite this source", | |
# elem_id="citation-button", | |
# show_copy_button=True) | |
# ).style(show_copy_button=True) | |
return demo | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true") | |
# parser.add_argument("--bench_table", help="Path to MERA table", default="data_dir/MERA_jun2024.jsonl") | |
args = parser.parse_args() | |
# data_load(args.result_file) | |
# TYPES = ["number", "markdown", "number"] | |
demo = build_demo() | |
demo.launch(share=args.share, height=3000, width="110%") # share=args.share | |
# demo = gradio.Interface(fn=gen, inputs="text", outputs="text") | |
# demo.launch() | |