import gradio as gr from transformers import pipeline, set_seed #Using the local model #model="./models/mt5-small-finetuned-amazon-en-es" #summarizer = pipeline("summarization", model) #Using the default model #summarizer = pipeline("summarization") #Using the fine tuned model hosted in hf #hub_model_id = "vhpvmx/mt5-small-finetuned-amazon-en-es" #response = pipeline("summarization", model=hub_model_id) #def resp(text): #summarize # return response(text)[0]["summary_text"] #hub_model_id = "WizardLM/WizardLM-7B-V1.0" #response = pipeline("text2text-generation", model=hub_model_id) #Obtuve este error, no encontro el modelo #OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like WizardLM/WizardLM-7B-V1.0 is not the path to a directory containing a file named config.json. #Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. #hub_model_id = "tiiuae/falcon-7b-instruct" #response = pipeline("text-generation", model=hub_model_id) #obtuve este error #runtime error #Memory limit exceeded (16Gi) #obtuve este error - despues de hacer hw upgrade #runtime error #Memory limit exceeded (32Gi) response = pipeline('text-generation', model='gpt2') set_seed(42) def resp(text): return response(text) with gr.Blocks() as demo: input_text = gr.Textbox(placeholder="Ingresa un texto...", lines=4) output_text = gr.Textbox(label="Respuesta") btn = gr.Button("Genera la respuesta") btn.click(resp, input_text, output_text) demo.launch()