Spaces:
Runtime error
Runtime error
File size: 10,550 Bytes
a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db 78ead19 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 cdb28db a70de84 78ead19 a70de84 cdb28db a70de84 44e58ed cdb28db a70de84 cdb28db a70de84 cdb28db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
from matplotlib.pyplot import axis
import gradio as gr
import requests
import numpy as np
from torch import nn
import requests
import cv2
import torch
import detectron2
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import ColorMode
from detectron2.structures import Instances
from detectron2.structures import Boxes
damage_model_path = 'damage/model_final.pth'
scratch_model_path = 'scratch/model_final.pth'
parts_model_path = 'parts/model_final.pth'
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
cfg_scratches = get_cfg()
cfg_scratches.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_scratches.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8
cfg_scratches.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg_scratches.MODEL.WEIGHTS = scratch_model_path
cfg_scratches.MODEL.DEVICE = device
predictor_scratches = DefaultPredictor(cfg_scratches)
metadata_scratch = MetadataCatalog.get("car_dataset_val")
metadata_scratch.thing_classes = ["scratch"]
cfg_damage = get_cfg()
cfg_damage.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_damage.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7
cfg_damage.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg_damage.MODEL.WEIGHTS = damage_model_path
cfg_damage.MODEL.DEVICE = device
predictor_damage = DefaultPredictor(cfg_damage)
metadata_damage = MetadataCatalog.get("car_damage_dataset_val")
metadata_damage.thing_classes = ["damage"]
cfg_parts = get_cfg()
cfg_parts.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_parts.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75
cfg_parts.MODEL.ROI_HEADS.NUM_CLASSES = 19
cfg_parts.MODEL.WEIGHTS = parts_model_path
cfg_parts.MODEL.DEVICE = device
predictor_parts = DefaultPredictor(cfg_parts)
metadata_parts = MetadataCatalog.get("car_parts_dataset_val")
metadata_parts.thing_classes = ['_background_',
'back_bumper',
'back_glass',
'back_left_door',
'back_left_light',
'back_right_door',
'back_right_light',
'front_bumper',
'front_glass',
'front_left_door',
'front_left_light',
'front_right_door',
'front_right_light',
'hood',
'left_mirror',
'right_mirror',
'tailgate',
'trunk',
'wheel']
def merge_segment(pred_segm):
merge_dict = {}
for i in range(len(pred_segm)):
merge_dict[i] = []
for j in range(i+1,len(pred_segm)):
if torch.sum(pred_segm[i]*pred_segm[j])>0:
merge_dict[i].append(j)
to_delete = []
for key in merge_dict:
for element in merge_dict[key]:
to_delete.append(element)
for element in to_delete:
merge_dict.pop(element,None)
empty_delete = []
for key in merge_dict:
if merge_dict[key] == []:
empty_delete.append(key)
for element in empty_delete:
merge_dict.pop(element,None)
for key in merge_dict:
for element in merge_dict[key]:
pred_segm[key]+=pred_segm[element]
except_elem = list(set(to_delete))
new_indexes = list(range(len(pred_segm)))
for elem in except_elem:
new_indexes.remove(elem)
return pred_segm[new_indexes]
def inference(image):
img = np.array(image)
outputs_damage = predictor_damage(img)
outputs_parts = predictor_parts(img)
outputs_scratch = predictor_scratches(img)
out_dict = outputs_damage["instances"].to("cpu").get_fields()
merged_damage_masks = merge_segment(out_dict['pred_masks'])
scratch_data = outputs_scratch["instances"].get_fields()
scratch_masks = scratch_data['pred_masks']
damage_data = outputs_damage["instances"].get_fields()
damage_masks = damage_data['pred_masks']
parts_data = outputs_parts["instances"].get_fields()
parts_masks = parts_data['pred_masks']
parts_classes = parts_data['pred_classes']
new_inst = detectron2.structures.Instances((1024,1024))
new_inst.set('pred_masks',merge_segment(out_dict['pred_masks']))
parts_damage_dict = {}
parts_list_damages = []
for part in parts_classes:
parts_damage_dict[metadata_parts.thing_classes[part]] = []
for mask in scratch_masks:
for i in range(len(parts_masks)):
if torch.sum(parts_masks[i]*mask)>0:
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('scratch')
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
for mask in merged_damage_masks:
for i in range(len(parts_masks)):
if torch.sum(parts_masks[i]*mask)>0:
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('damage')
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')
# Define the colors for the scratch and damage masks
scratch_color = (0, 0, 255) # red
damage_color = (0, 255, 255) # yellow
# Convert the scratch and damage masks to numpy arrays
scratch_masks_arr = np.array(scratch_masks)
damage_masks_arr = np.array(damage_masks)
# Resize the scratch and damage masks to match the size of the original image
if len(scratch_masks_arr) > 0:
scratch_mask_resized = cv2.resize(scratch_masks_arr[0].astype(np.uint8), (img.shape[1], img.shape[0]))
else:
scratch_mask_resized = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8)
if len(damage_masks_arr) > 0:
damage_mask_resized = cv2.resize(damage_masks_arr[0].astype(np.uint8), (img.shape[1], img.shape[0]))
else:
damage_mask_resized = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8)
# Merge the scratch and damage masks into a single binary mask
merged_mask = np.zeros_like(scratch_mask_resized)
merged_mask[(scratch_mask_resized> 0) | (damage_mask_resized > 0)] = 255
# Overlay the merged mask on top of the original image
overlay = img.copy()
overlay[merged_mask == 255] = (0, 255, 0) # green color for the merged mask
overlay[damage_mask_resized == 255] = damage_color # yellow color for the damage mask
#output = cv2.addWeighted(overlay, 0.5, img, 0.5, 0)
# Merge the instance predictions from both predictors
image_np = np.array(image)
height, width, channels = image_np.shape
# Get the predicted boxes from the scratches predictor
pred_boxes_scratch = outputs_scratch["instances"].pred_boxes.tensor
# Get the predicted boxes from the damage predictor
pred_boxes_damage = outputs_damage["instances"].pred_boxes.tensor
# Concatenate the predicted boxes along the batch dimension
merged_boxes = torch.cat([pred_boxes_scratch, pred_boxes_damage], dim=0)
# Create a new Instances object with the merged boxes
merged_instances = Instances((image_np.shape[0], image_np.shape[1]))
merged_instances.pred_boxes = Boxes(merged_boxes)
# Visualize the Masks
v_d = Visualizer(img[:, :, ::-1],
metadata=metadata_damage,
scale=0.5,
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
)
v_d = Visualizer(img,scale=1.2)
out_d = v_d.draw_instance_predictions(new_inst)
img1 = out_d.get_image()[:, :, ::-1]
v_s = Visualizer(img[:, :, ::-1],
metadata=metadata_scratch,
scale=0.5,
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
)
v_s = Visualizer(img,scale=1.2)
out_s = v_s.draw_instance_predictions(outputs_scratch["instances"])
img2 = out_s.get_image()[:, :, ::-1]
v_p = Visualizer(img[:, :, ::-1],
metadata=metadata_parts,
scale=0.5,
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
)
v_p = Visualizer(img,scale=1.2)
out_p = v_p.draw_instance_predictions(outputs_parts["instances"])
img3 = out_p.get_image()[:, :, ::-1]
# Visualize the overlay
v_m = Visualizer(overlay[:, :, ::-1],
metadata=metadata_damage,
scale=1.2,
instance_mode=ColorMode.SEGMENTATION # display the overlay in black and white
)
# Draw the overlay with instance predictions
overlay_with_predictions = v_m.draw_instance_predictions(merged_instances.to("cpu")).get_image()[:, :, ::-1]
#v_m = Visualizer(overlay,scale=1.2)
out = v_m.draw_instance_predictions(merged_instances)
output = out.get_image()[:, :, ::-1]
return img1, img2, img3, parts_list_damages, output
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.HTML("<h1 style='text-align: center;'>Damage Detection Dashboard</h1>")
gr.Markdown("## Inputs")
image = gr.Image(type="pil",label="Input")
submit_button = gr.Button(value="Submit", label="Submit")
with gr.Column():
gr.Markdown("## Outputs")
with gr.Tab('Image of damages'):
im1 = gr.Image(type='numpy',label='Image of damages')
with gr.Tab('Image of scratches'):
im2 = gr.Image(type='numpy',label='Image of scratches')
with gr.Tab('Image of parts'):
im3 = gr.Image(type='numpy',label='Image of car parts')
with gr.Tab('Information about damaged parts'):
intersections = gr.Textbox(label='Information about type of damages on each part')
with gr.Tab('Image of overlayed damage parts'):
overlayed = gr.Image(type='numpy',label='Image of overlayed damage parts')
#actions
submit_button.click(
fn=inference,
inputs = [image],
api_name="/predict",
outputs = [im1,im2,im3,intersections, overlayed]
)
if __name__ == "__main__":
demo.launch() |