File size: 10,550 Bytes
a70de84
 
 
cdb28db
a70de84
 
 
 
 
 
 
 
cdb28db
a70de84
 
 
 
 
 
 
 
 
cdb28db
 
a70de84
 
 
 
 
 
 
 
 
cdb28db
a70de84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdb28db
a70de84
 
 
 
 
 
 
cdb28db
a70de84
 
 
 
cdb28db
a70de84
 
cdb28db
a70de84
 
 
 
cdb28db
a70de84
 
cdb28db
a70de84
 
 
cdb28db
a70de84
cdb28db
a70de84
 
 
cdb28db
a70de84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdb28db
 
a70de84
 
 
 
 
 
 
 
cdb28db
a70de84
 
 
 
 
 
 
 
cdb28db
 
 
 
 
 
 
78ead19
 
 
 
 
 
 
 
cdb28db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a70de84
cdb28db
 
a70de84
 
cdb28db
a70de84
 
 
 
cdb28db
 
a70de84
 
cdb28db
a70de84
 
 
 
cdb28db
 
a70de84
 
cdb28db
a70de84
 
cdb28db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a70de84
 
 
 
 
78ead19
a70de84
 
 
 
 
 
 
 
 
 
 
 
 
cdb28db
 
 
a70de84
 
 
 
44e58ed
cdb28db
a70de84
cdb28db
a70de84
cdb28db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
try:
    import detectron2
except:
    import os
    os.system('pip install git+https://github.com/facebookresearch/detectron2.git')

from matplotlib.pyplot import axis
import gradio as gr
import requests
import numpy as np
from torch import nn
import requests
import cv2

import torch
import detectron2
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import ColorMode
from detectron2.structures import Instances
from detectron2.structures import Boxes

damage_model_path = 'damage/model_final.pth'
scratch_model_path = 'scratch/model_final.pth'
parts_model_path = 'parts/model_final.pth'

if torch.cuda.is_available():
    device = 'cuda'
else:
    device = 'cpu'
 
cfg_scratches = get_cfg()
cfg_scratches.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_scratches.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8
cfg_scratches.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg_scratches.MODEL.WEIGHTS = scratch_model_path
cfg_scratches.MODEL.DEVICE = device

predictor_scratches = DefaultPredictor(cfg_scratches)

metadata_scratch = MetadataCatalog.get("car_dataset_val")
metadata_scratch.thing_classes = ["scratch"]

cfg_damage = get_cfg()
cfg_damage.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_damage.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7
cfg_damage.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg_damage.MODEL.WEIGHTS = damage_model_path
cfg_damage.MODEL.DEVICE = device

predictor_damage = DefaultPredictor(cfg_damage)

metadata_damage = MetadataCatalog.get("car_damage_dataset_val")
metadata_damage.thing_classes = ["damage"]

cfg_parts = get_cfg()
cfg_parts.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_parts.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75
cfg_parts.MODEL.ROI_HEADS.NUM_CLASSES = 19
cfg_parts.MODEL.WEIGHTS = parts_model_path
cfg_parts.MODEL.DEVICE = device

predictor_parts = DefaultPredictor(cfg_parts)

metadata_parts = MetadataCatalog.get("car_parts_dataset_val")
metadata_parts.thing_classes = ['_background_',
 'back_bumper',
 'back_glass',
 'back_left_door',
 'back_left_light',
 'back_right_door',
 'back_right_light',
 'front_bumper',
 'front_glass',
 'front_left_door',
 'front_left_light',
 'front_right_door',
 'front_right_light',
 'hood',
 'left_mirror',
 'right_mirror',
 'tailgate',
 'trunk',
 'wheel']


def merge_segment(pred_segm):
    merge_dict = {}
    for i in range(len(pred_segm)):
        merge_dict[i] = []
        for j in range(i+1,len(pred_segm)):
            if torch.sum(pred_segm[i]*pred_segm[j])>0:
                merge_dict[i].append(j)

    to_delete = []
    for key in merge_dict:
        for element in merge_dict[key]:
            to_delete.append(element)

    for element in to_delete:
        merge_dict.pop(element,None)

    empty_delete = []
    for key in merge_dict:
        if merge_dict[key] == []:
            empty_delete.append(key)

    for element in empty_delete:
        merge_dict.pop(element,None)

    for key in merge_dict:
        for element in merge_dict[key]:
            pred_segm[key]+=pred_segm[element]

    except_elem = list(set(to_delete))

    new_indexes = list(range(len(pred_segm)))
    for elem in except_elem:
        new_indexes.remove(elem)

    return pred_segm[new_indexes]

def inference(image):
    img = np.array(image)
    outputs_damage = predictor_damage(img)
    outputs_parts = predictor_parts(img)
    outputs_scratch = predictor_scratches(img)
    out_dict = outputs_damage["instances"].to("cpu").get_fields()
    merged_damage_masks = merge_segment(out_dict['pred_masks'])
    scratch_data = outputs_scratch["instances"].get_fields()
    scratch_masks = scratch_data['pred_masks']
    damage_data = outputs_damage["instances"].get_fields()
    damage_masks = damage_data['pred_masks']
    parts_data = outputs_parts["instances"].get_fields()
    parts_masks = parts_data['pred_masks']
    parts_classes = parts_data['pred_classes']
    new_inst = detectron2.structures.Instances((1024,1024))
    new_inst.set('pred_masks',merge_segment(out_dict['pred_masks']))


    parts_damage_dict = {}
    parts_list_damages = []
    for part in parts_classes:
        parts_damage_dict[metadata_parts.thing_classes[part]] = []
    for mask in scratch_masks:
        for i in range(len(parts_masks)):
            if torch.sum(parts_masks[i]*mask)>0:
                parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('scratch')
                parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
                print(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
    for mask in merged_damage_masks:
        for i in range(len(parts_masks)):
            if torch.sum(parts_masks[i]*mask)>0:
                parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('damage')
                parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')
                print(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')

    # Define the colors for the scratch and damage masks
    scratch_color = (0, 0, 255)  # red
    damage_color = (0, 255, 255)  # yellow
    # Convert the scratch and damage masks to numpy arrays
    scratch_masks_arr = np.array(scratch_masks)
    damage_masks_arr = np.array(damage_masks)
    # Resize the scratch and damage masks to match the size of the original image
    if len(scratch_masks_arr) > 0:
      scratch_mask_resized = cv2.resize(scratch_masks_arr[0].astype(np.uint8), (img.shape[1], img.shape[0]))
    else:
      scratch_mask_resized = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8)
    if len(damage_masks_arr) > 0:
      damage_mask_resized = cv2.resize(damage_masks_arr[0].astype(np.uint8), (img.shape[1], img.shape[0]))
    else:
      damage_mask_resized = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8)
    # Merge the scratch and damage masks into a single binary mask
    merged_mask = np.zeros_like(scratch_mask_resized)
    merged_mask[(scratch_mask_resized> 0) | (damage_mask_resized > 0)] = 255
    # Overlay the merged mask on top of the original image
    overlay = img.copy()
    overlay[merged_mask == 255] = (0, 255, 0)  # green color for the merged mask
    overlay[damage_mask_resized == 255] = damage_color  # yellow color for the damage mask
    #output = cv2.addWeighted(overlay, 0.5, img, 0.5, 0)

    # Merge the instance predictions from both predictors
    image_np = np.array(image)
    height, width, channels = image_np.shape
     
    # Get the predicted boxes from the scratches predictor
    pred_boxes_scratch = outputs_scratch["instances"].pred_boxes.tensor

    # Get the predicted boxes from the damage predictor
    pred_boxes_damage = outputs_damage["instances"].pred_boxes.tensor

    # Concatenate the predicted boxes along the batch dimension
    merged_boxes = torch.cat([pred_boxes_scratch, pred_boxes_damage], dim=0)

    # Create a new Instances object with the merged boxes
    merged_instances = Instances((image_np.shape[0], image_np.shape[1]))
    merged_instances.pred_boxes = Boxes(merged_boxes)
  

    # Visualize the Masks
    v_d = Visualizer(img[:, :, ::-1],
                   metadata=metadata_damage,
                   scale=0.5,
                   instance_mode=ColorMode.SEGMENTATION   # remove the colors of unsegmented pixels. This option is only available for segmentation models
    )
    v_d = Visualizer(img,scale=1.2)
    out_d = v_d.draw_instance_predictions(new_inst)
    img1 = out_d.get_image()[:, :, ::-1]

    v_s = Visualizer(img[:, :, ::-1],
                   metadata=metadata_scratch,
                   scale=0.5,
                   instance_mode=ColorMode.SEGMENTATION   # remove the colors of unsegmented pixels. This option is only available for segmentation models
    )
    v_s = Visualizer(img,scale=1.2)
    out_s = v_s.draw_instance_predictions(outputs_scratch["instances"])
    img2 = out_s.get_image()[:, :, ::-1]

    v_p = Visualizer(img[:, :, ::-1],
                   metadata=metadata_parts,
                   scale=0.5,
                   instance_mode=ColorMode.SEGMENTATION   # remove the colors of unsegmented pixels. This option is only available for segmentation models
    )
    v_p = Visualizer(img,scale=1.2)
    out_p = v_p.draw_instance_predictions(outputs_parts["instances"])
    img3 = out_p.get_image()[:, :, ::-1]

    # Visualize the overlay
    v_m = Visualizer(overlay[:, :, ::-1],
                 metadata=metadata_damage,
                 scale=1.2,
                 instance_mode=ColorMode.SEGMENTATION   # display the overlay in black and white
                )
    # Draw the overlay with instance predictions
    overlay_with_predictions = v_m.draw_instance_predictions(merged_instances.to("cpu")).get_image()[:, :, ::-1]
    #v_m = Visualizer(overlay,scale=1.2)
    out = v_m.draw_instance_predictions(merged_instances)
    output = out.get_image()[:, :, ::-1]




    return img1, img2, img3, parts_list_damages, output


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            gr.HTML("<h1 style='text-align: center;'>Damage Detection Dashboard</h1>")
            gr.Markdown("## Inputs")
            image = gr.Image(type="pil",label="Input")
            submit_button = gr.Button(value="Submit", label="Submit")
        with gr.Column():
            gr.Markdown("## Outputs")
            with gr.Tab('Image of damages'):
                im1 = gr.Image(type='numpy',label='Image of damages')
            with gr.Tab('Image of scratches'):
                im2 = gr.Image(type='numpy',label='Image of scratches')
            with gr.Tab('Image of parts'):
                im3 = gr.Image(type='numpy',label='Image of car parts')
            with gr.Tab('Information about damaged parts'):
                intersections = gr.Textbox(label='Information about type of damages on each part')
            with gr.Tab('Image of overlayed damage parts'):
                overlayed = gr.Image(type='numpy',label='Image of overlayed damage parts')

    #actions
    submit_button.click(
        fn=inference,
        inputs = [image],
        api_name="/predict",
        outputs = [im1,im2,im3,intersections, overlayed]
    )

if __name__ == "__main__":
   demo.launch()