Spaces:
Runtime error
Runtime error
try: | |
import detectron2 | |
except: | |
import os | |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
from matplotlib.pyplot import axis | |
import gradio as gr | |
import requests | |
import numpy as np | |
from torch import nn | |
import requests | |
import cv2 | |
import torch | |
import detectron2 | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog | |
from detectron2.utils.visualizer import ColorMode | |
from detectron2.structures import Instances | |
from detectron2.structures import Boxes | |
damage_model_path = 'damage/model_final.pth' | |
scratch_model_path = 'scratch/model_final.pth' | |
parts_model_path = 'parts/model_final.pth' | |
if torch.cuda.is_available(): | |
device = 'cuda' | |
else: | |
device = 'cpu' | |
cfg_scratches = get_cfg() | |
cfg_scratches.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) | |
cfg_scratches.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8 | |
cfg_scratches.MODEL.ROI_HEADS.NUM_CLASSES = 1 | |
cfg_scratches.MODEL.WEIGHTS = scratch_model_path | |
cfg_scratches.MODEL.DEVICE = device | |
predictor_scratches = DefaultPredictor(cfg_scratches) | |
metadata_scratch = MetadataCatalog.get("car_dataset_val") | |
metadata_scratch.thing_classes = ["scratch"] | |
cfg_damage = get_cfg() | |
cfg_damage.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) | |
cfg_damage.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 | |
cfg_damage.MODEL.ROI_HEADS.NUM_CLASSES = 1 | |
cfg_damage.MODEL.WEIGHTS = damage_model_path | |
cfg_damage.MODEL.DEVICE = device | |
predictor_damage = DefaultPredictor(cfg_damage) | |
metadata_damage = MetadataCatalog.get("car_damage_dataset_val") | |
metadata_damage.thing_classes = ["damage"] | |
cfg_parts = get_cfg() | |
cfg_parts.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) | |
cfg_parts.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75 | |
cfg_parts.MODEL.ROI_HEADS.NUM_CLASSES = 19 | |
cfg_parts.MODEL.WEIGHTS = parts_model_path | |
cfg_parts.MODEL.DEVICE = device | |
predictor_parts = DefaultPredictor(cfg_parts) | |
metadata_parts = MetadataCatalog.get("car_parts_dataset_val") | |
metadata_parts.thing_classes = ['_background_', | |
'back_bumper', | |
'back_glass', | |
'back_left_door', | |
'back_left_light', | |
'back_right_door', | |
'back_right_light', | |
'front_bumper', | |
'front_glass', | |
'front_left_door', | |
'front_left_light', | |
'front_right_door', | |
'front_right_light', | |
'hood', | |
'left_mirror', | |
'right_mirror', | |
'tailgate', | |
'trunk', | |
'wheel'] | |
def merge_segment(pred_segm): | |
merge_dict = {} | |
for i in range(len(pred_segm)): | |
merge_dict[i] = [] | |
for j in range(i+1,len(pred_segm)): | |
if torch.sum(pred_segm[i]*pred_segm[j])>0: | |
merge_dict[i].append(j) | |
to_delete = [] | |
for key in merge_dict: | |
for element in merge_dict[key]: | |
to_delete.append(element) | |
for element in to_delete: | |
merge_dict.pop(element,None) | |
empty_delete = [] | |
for key in merge_dict: | |
if merge_dict[key] == []: | |
empty_delete.append(key) | |
for element in empty_delete: | |
merge_dict.pop(element,None) | |
for key in merge_dict: | |
for element in merge_dict[key]: | |
pred_segm[key]+=pred_segm[element] | |
except_elem = list(set(to_delete)) | |
new_indexes = list(range(len(pred_segm))) | |
for elem in except_elem: | |
new_indexes.remove(elem) | |
return pred_segm[new_indexes] | |
def inference(image): | |
img = np.array(image) | |
outputs_damage = predictor_damage(img) | |
outputs_parts = predictor_parts(img) | |
outputs_scratch = predictor_scratches(img) | |
out_dict = outputs_damage["instances"].to("cpu").get_fields() | |
merged_damage_masks = merge_segment(out_dict['pred_masks']) | |
scratch_data = outputs_scratch["instances"].get_fields() | |
scratch_masks = scratch_data['pred_masks'] | |
damage_data = outputs_damage["instances"].get_fields() | |
damage_masks = damage_data['pred_masks'] | |
parts_data = outputs_parts["instances"].get_fields() | |
parts_masks = parts_data['pred_masks'] | |
parts_classes = parts_data['pred_classes'] | |
new_inst = detectron2.structures.Instances((1024,1024)) | |
new_inst.set('pred_masks',merge_segment(out_dict['pred_masks'])) | |
parts_damage_dict = {} | |
parts_list_damages = [] | |
for part in parts_classes: | |
parts_damage_dict[metadata_parts.thing_classes[part]] = [] | |
for mask in scratch_masks: | |
for i in range(len(parts_masks)): | |
if torch.sum(parts_masks[i]*mask)>0: | |
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('scratch') | |
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch') | |
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch') | |
for mask in merged_damage_masks: | |
for i in range(len(parts_masks)): | |
if torch.sum(parts_masks[i]*mask)>0: | |
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('damage') | |
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage') | |
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage') | |
# Define the colors for the scratch and damage masks | |
scratch_color = (0, 0, 255) # red | |
damage_color = (0, 255, 255) # yellow | |
# Convert the scratch and damage masks to numpy arrays | |
scratch_masks_arr = np.array(scratch_masks) | |
damage_masks_arr = np.array(damage_masks) | |
# Resize the scratch and damage masks to match the size of the original image | |
if len(scratch_masks_arr) > 0: | |
scratch_mask_resized = cv2.resize(scratch_masks_arr[0].astype(np.uint8), (img.shape[1], img.shape[0])) | |
else: | |
scratch_mask_resized = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8) | |
if len(damage_masks_arr) > 0: | |
damage_mask_resized = cv2.resize(damage_masks_arr[0].astype(np.uint8), (img.shape[1], img.shape[0])) | |
else: | |
damage_mask_resized = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8) | |
# Merge the scratch and damage masks into a single binary mask | |
merged_mask = np.zeros_like(scratch_mask_resized) | |
merged_mask[(scratch_mask_resized> 0) | (damage_mask_resized > 0)] = 255 | |
# Overlay the merged mask on top of the original image | |
overlay = img.copy() | |
overlay[merged_mask == 255] = (0, 255, 0) # green color for the merged mask | |
overlay[damage_mask_resized == 255] = damage_color # yellow color for the damage mask | |
#output = cv2.addWeighted(overlay, 0.5, img, 0.5, 0) | |
# Merge the instance predictions from both predictors | |
image_np = np.array(image) | |
height, width, channels = image_np.shape | |
# Get the predicted boxes from the scratches predictor | |
pred_boxes_scratch = outputs_scratch["instances"].pred_boxes.tensor | |
# Get the predicted boxes from the damage predictor | |
pred_boxes_damage = outputs_damage["instances"].pred_boxes.tensor | |
# Concatenate the predicted boxes along the batch dimension | |
merged_boxes = torch.cat([pred_boxes_scratch, pred_boxes_damage], dim=0) | |
# Create a new Instances object with the merged boxes | |
merged_instances = Instances((image_np.shape[0], image_np.shape[1])) | |
merged_instances.pred_boxes = Boxes(merged_boxes) | |
# Visualize the Masks | |
v_d = Visualizer(img[:, :, ::-1], | |
metadata=metadata_damage, | |
scale=0.5, | |
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models | |
) | |
v_d = Visualizer(img,scale=1.2) | |
out_d = v_d.draw_instance_predictions(new_inst) | |
img1 = out_d.get_image()[:, :, ::-1] | |
v_s = Visualizer(img[:, :, ::-1], | |
metadata=metadata_scratch, | |
scale=0.5, | |
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models | |
) | |
v_s = Visualizer(img,scale=1.2) | |
out_s = v_s.draw_instance_predictions(outputs_scratch["instances"]) | |
img2 = out_s.get_image()[:, :, ::-1] | |
v_p = Visualizer(img[:, :, ::-1], | |
metadata=metadata_parts, | |
scale=0.5, | |
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models | |
) | |
v_p = Visualizer(img,scale=1.2) | |
out_p = v_p.draw_instance_predictions(outputs_parts["instances"]) | |
img3 = out_p.get_image()[:, :, ::-1] | |
# Visualize the overlay | |
v_m = Visualizer(overlay[:, :, ::-1], | |
metadata=metadata_damage, | |
scale=1.2, | |
instance_mode=ColorMode.SEGMENTATION # display the overlay in black and white | |
) | |
# Draw the overlay with instance predictions | |
overlay_with_predictions = v_m.draw_instance_predictions(merged_instances.to("cpu")).get_image()[:, :, ::-1] | |
#v_m = Visualizer(overlay,scale=1.2) | |
out = v_m.draw_instance_predictions(merged_instances) | |
output = out.get_image()[:, :, ::-1] | |
return img1, img2, img3, parts_list_damages, output | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML("<h1 style='text-align: center;'>Damage Detection Dashboard</h1>") | |
gr.Markdown("## Inputs") | |
image = gr.Image(type="pil",label="Input") | |
submit_button = gr.Button(value="Submit", label="Submit") | |
with gr.Column(): | |
gr.Markdown("## Outputs") | |
with gr.Tab('Image of damages'): | |
im1 = gr.Image(type='numpy',label='Image of damages') | |
with gr.Tab('Image of scratches'): | |
im2 = gr.Image(type='numpy',label='Image of scratches') | |
with gr.Tab('Image of parts'): | |
im3 = gr.Image(type='numpy',label='Image of car parts') | |
with gr.Tab('Information about damaged parts'): | |
intersections = gr.Textbox(label='Information about type of damages on each part') | |
with gr.Tab('Image of overlayed damage parts'): | |
overlayed = gr.Image(type='numpy',label='Image of overlayed damage parts') | |
#actions | |
submit_button.click( | |
fn=inference, | |
inputs = [image], | |
api_name="/predict", | |
outputs = [im1,im2,im3,intersections, overlayed] | |
) | |
if __name__ == "__main__": | |
demo.launch() |