File size: 11,016 Bytes
577df10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9513502
577df10
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad8408
 
010d2b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46574e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
010d2b7
 
 
 
 
 
577df10
93d27bc
f020ac9
 
35901d4
11c3fc1
 
 
010d2b7
 
f020ac9
010d2b7
 
93d27bc
010d2b7
 
 
 
 
 
 
 
 
 
 
577df10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d979984
577df10
 
 
 
 
 
 
 
 
 
 
 
 
 
93d27bc
577df10
93d27bc
577df10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93d27bc
ebd340c
577df10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9be5653
 
 
 
 
 
 
 
 
 
 
 
577df10
 
93d27bc
ebd340c
 
577df10
 
 
0f95895
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import logging
import os
import boto3
import json
import shlex
import subprocess
import tempfile
import time
import base64
import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from PIL import Image
from functools import partial
import io


subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))

from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation


HEADER = """FRAME AI"""
torch.cuda.empty_cache()
if torch.cuda.is_available():
    device = "cuda:0"
else:
    device = "cpu"

model = TSR.from_pretrained(
    "stabilityai/TripoSR",
    config_name="config.yaml",
    weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)

rembg_session = rembg.new_session()
ACCESS = os.getenv("ACCESS")
SECRET = os.getenv("SECRET")
bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
# def generate_image_from_text(pos_prompt):
#     # bedrock_runtime = boto3.client(region_name = 'us-east-1', service_name='bedrock-runtime')
#     parameters = {'text_prompts': [{'text': pos_prompt , 'weight':1},
#                                     {'text': """Blurry, out of frame, out of focus, Detailed, dull, duplicate, bad quality, low resolution, cropped""", 'weight': -1}],
#                   'cfg_scale': 7, 'seed': 0, 'samples': 1}
#     request_body = json.dumps(parameters)
#     response = bedrock_runtime.invoke_model(body=request_body,modelId = 'stability.stable-diffusion-xl-v1')
#     response_body = json.loads(response.get('body').read())
#     base64_image_data = base64.b64decode(response_body['artifacts'][0]['base64'])
    
#     return Image.open(io.BytesIO(base64_image_data))


def gen_pos_prompt(text):
  instruction = f'''Your task is to create a positive prompt for image generation.

    Objective: Generate images that prioritize structural integrity and accurate shapes. The focus should be on the correct form and basic contours of objects, with minimal concern for colors.
    
    Guidelines:
    
    Complex Objects (e.g., animals, vehicles): For these, the image should resemble a toy object, emphasizing the correct shape and structure while minimizing details and color complexity.
    
    Example Input: A sports bike
    Example Positive Prompt: Simple sports bike with accurate shape and structure, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, toy-like appearance, low contrast.
    
    Example Input: A lion
    Example Positive Prompt: Toy-like depiction of a lion with a focus on structural accuracy, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast.
    
    Simple Objects (e.g., a tennis ball): For these, the prompt should specify a realistic depiction, focusing on the accurate shape and structure.
    
    Example Input: A tennis ball
    Example Positive Prompt: Realistic depiction of a tennis ball with accurate shape and texture, digital painting, clean lines, minimal additional details, soft lighting, neutral or muted colors, focus on structural integrity.
    
    Prompt Structure:
    
    Subject: Clearly describe the object and its essential shape and structure.
    Medium: Specify the art style (e.g., digital painting, concept art).
    Style: Include relevant style terms (e.g., simplified, toy-like for complex objects; realistic for simple objects).
    Resolution: Mention resolution if necessary (e.g., basic resolution).
    Lighting: Indicate the type of lighting (e.g., soft lighting).
    Color: Use neutral or muted colors with minimal emphasis on color details.
    Additional Details: Keep additional details minimal or specify if not desired.


    Input: {text}
    Positive Prompt: 
    '''

  body = json.dumps({'inputText': instruction,
                     'textGenerationConfig': {'temperature': 0.1, 'topP': 0.01, 'maxTokenCount':512}})
  response = bedrock_runtime.invoke_model(body=body, modelId='amazon.titan-text-express-v1')
  pos_prompt = json.loads(response.get('body').read())['results'][0]['outputText']
  return pos_prompt

def generate_image_from_text(pos_prompt, seed):
  new_prompt = gen_pos_prompt(pos_prompt)
  print(new_prompt)
  neg_prompt = '''Detailed, complex textures, intricate patterns, realistic lighting, high contrast, reflections, fuzzy surface, realistic proportions, photographic quality, vibrant colors, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''
  neg_prompt = '''Complex textures, intricate patterns, realistic lighting, high contrast, reflections, fuzzy surface, photographic quality, vibrant colors, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''

    
  parameters = {
      'taskType': 'TEXT_IMAGE',
      'textToImageParams': {'text': new_prompt,
                            'negativeText': neg_prompt},
      'imageGenerationConfig': {"cfgScale":8,
                                "seed":int(seed),
                                "width":512,
                                "height":512,
                                "numberOfImages":1
                                }
  }
  request_body = json.dumps(parameters)
  response = bedrock_runtime.invoke_model(body=request_body, modelId='amazon.titan-image-generator-v1')
  response_body = json.loads(response.get('body').read())
  base64_image_data = base64.b64decode(response_body['images'][0])

  return Image.open(io.BytesIO(base64_image_data))

def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")

def preprocess(input_image, do_remove_background, foreground_ratio):
    def fill_background(image):
        image = np.array(image).astype(np.float32) / 255.0
        image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
        image = Image.fromarray((image * 255.0).astype(np.uint8))
        return image

    if do_remove_background:
        image = input_image.convert("RGB")
        image = remove_background(image, rembg_session)
        image = resize_foreground(image, foreground_ratio)
        image = fill_background(image)
    else:
        image = input_image
        if image.mode == "RGBA":
            image = fill_background(image)
    return image

@spaces.GPU
def generate(image, mc_resolution, formats=["obj", "glb"]):
    scene_codes = model(image, device=device)
    mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
    mesh = to_gradio_3d_orientation(mesh)

    mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
    mesh.export(mesh_path_glb.name)

    mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
    mesh.apply_scale([-1, 1, 1])  # Otherwise the visualized .obj will be flipped
    mesh.export(mesh_path_obj.name)
    
    return mesh_path_obj.name, mesh_path_glb.name

def run_example(text_prompt,seed do_remove_background, foreground_ratio, mc_resolution):
    # Step 1: Generate the image from text prompt
    image_pil = generate_image_from_text(text_prompt, seed)
    
    # Step 2: Preprocess the image
    preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
    
    # Step 3: Generate the 3D model
    mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution, ["obj", "glb"])
    
    return preprocessed, mesh_name_obj, mesh_name_glb

with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                text_prompt = gr.Textbox(
                    label="Text Prompt",
                    placeholder="Enter a text prompt for image generation"
                )
                input_image = gr.Image(
                    label="Generated Image",
                    image_mode="RGBA",
                    sources="upload",
                    type="pil",
                    elem_id="content_image",
                    visible=False  # Hidden since we generate the image from text
                )
                seed = gr.Number(value=0)
                processed_image = gr.Image(label="Processed Image", interactive=False, visible=False)
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Remove Background", value=True
                    )
                    foreground_ratio = gr.Slider(
                        label="Foreground Ratio",
                        minimum=0.5,
                        maximum=1.0,
                        value=0.85,
                        step=0.05,
                    )
                    mc_resolution = gr.Slider(
                        label="Marching Cubes Resolution",
                        minimum=32,
                        maximum=320,
                        value=256,
                        step=32
                     )
            with gr.Row():
                submit = gr.Button("Generate", elem_id="generate", variant="primary")
        with gr.Column():
            with gr.Tab("OBJ"):
                output_model_obj = gr.Model3D(
                    label="Output Model (OBJ Format)",
                    interactive=False,
                )
                gr.Markdown("Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage.")
            with gr.Tab("GLB"):
                output_model_glb = gr.Model3D(
                    label="Output Model (GLB Format)",
                    interactive=False,
                )
                gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
    # with gr.Row(variant="panel"):
    #     gr.Examples(
    #         examples=[
    #             os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
    #         ],
    #         inputs=[text_prompt],
    #         outputs=[processed_image, output_model_obj, output_model_glb],
    #         cache_examples=True,
    #         fn=partial(run_example, do_remove_background=True, foreground_ratio=0.85, mc_resolution=256),
    #         label="Examples",
    #         examples_per_page=20
    #     )
    submit.click(fn=check_input_image, inputs=[text_prompt]).success(
        fn=run_example,
        inputs=[text_prompt, seed, do_remove_background, foreground_ratio, mc_resolution],
        outputs=[processed_image, output_model_obj, output_model_glb],
        # outputs=[output_model_obj, output_model_glb],
    )

demo.queue(max_size=10)
demo.launch(auth=(os.getenv('USERNAME'), os.getenv('PASSWORD')))