File size: 12,663 Bytes
954dbee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

from __future__ import division
import datetime
import numpy as np
#import onnx
import onnxruntime
import os
import os.path as osp
import cv2
import sys

def softmax(z):
    assert len(z.shape) == 2
    s = np.max(z, axis=1)
    s = s[:, np.newaxis] # necessary step to do broadcasting
    e_x = np.exp(z - s)
    div = np.sum(e_x, axis=1)
    div = div[:, np.newaxis] # dito
    return e_x / div

def distance2bbox(points, distance, max_shape=None):
    """Decode distance prediction to bounding box.

    Args:
        points (Tensor): Shape (n, 2), [x, y].
        distance (Tensor): Distance from the given point to 4
            boundaries (left, top, right, bottom).
        max_shape (tuple): Shape of the image.

    Returns:
        Tensor: Decoded bboxes.
    """
    x1 = points[:, 0] - distance[:, 0]
    y1 = points[:, 1] - distance[:, 1]
    x2 = points[:, 0] + distance[:, 2]
    y2 = points[:, 1] + distance[:, 3]
    if max_shape is not None:
        x1 = x1.clamp(min=0, max=max_shape[1])
        y1 = y1.clamp(min=0, max=max_shape[0])
        x2 = x2.clamp(min=0, max=max_shape[1])
        y2 = y2.clamp(min=0, max=max_shape[0])
    return np.stack([x1, y1, x2, y2], axis=-1)

def distance2kps(points, distance, max_shape=None):
    """Decode distance prediction to bounding box.

    Args:
        points (Tensor): Shape (n, 2), [x, y].
        distance (Tensor): Distance from the given point to 4
            boundaries (left, top, right, bottom).
        max_shape (tuple): Shape of the image.

    Returns:
        Tensor: Decoded bboxes.
    """
    preds = []
    for i in range(0, distance.shape[1], 2):
        px = points[:, i%2] + distance[:, i]
        py = points[:, i%2+1] + distance[:, i+1]
        if max_shape is not None:
            px = px.clamp(min=0, max=max_shape[1])
            py = py.clamp(min=0, max=max_shape[0])
        preds.append(px)
        preds.append(py)
    return np.stack(preds, axis=-1)

class SCRFD:
    def __init__(self, model_file=None, session=None):
        import onnxruntime
        self.model_file = model_file
        self.session = session
        self.taskname = 'detection'
        self.batched = False
        if self.session is None:
            assert self.model_file is not None
            assert osp.exists(self.model_file)
            self.session = onnxruntime.InferenceSession(self.model_file, providers=['CoreMLExecutionProvider','CUDAExecutionProvider'])
        self.center_cache = {}
        self.nms_thresh = 0.4
        self.det_thresh = 0.5
        self._init_vars()

    def _init_vars(self):
        input_cfg = self.session.get_inputs()[0]
        input_shape = input_cfg.shape
        #print(input_shape)
        if isinstance(input_shape[2], str):
            self.input_size = None
        else:
            self.input_size = tuple(input_shape[2:4][::-1])
        #print('image_size:', self.image_size)
        input_name = input_cfg.name
        self.input_shape = input_shape
        outputs = self.session.get_outputs()
        if len(outputs[0].shape) == 3:
            self.batched = True
        output_names = []
        for o in outputs:
            output_names.append(o.name)
        self.input_name = input_name
        self.output_names = output_names
        self.input_mean = 127.5
        self.input_std = 128.0
        #print(self.output_names)
        #assert len(outputs)==10 or len(outputs)==15
        self.use_kps = False
        self._anchor_ratio = 1.0
        self._num_anchors = 1
        if len(outputs)==6:
            self.fmc = 3
            self._feat_stride_fpn = [8, 16, 32]
            self._num_anchors = 2
        elif len(outputs)==9:
            self.fmc = 3
            self._feat_stride_fpn = [8, 16, 32]
            self._num_anchors = 2
            self.use_kps = True
        elif len(outputs)==10:
            self.fmc = 5
            self._feat_stride_fpn = [8, 16, 32, 64, 128]
            self._num_anchors = 1
        elif len(outputs)==15:
            self.fmc = 5
            self._feat_stride_fpn = [8, 16, 32, 64, 128]
            self._num_anchors = 1
            self.use_kps = True

    def prepare(self, ctx_id, **kwargs):
        if ctx_id<0:
            self.session.set_providers(['CPUExecutionProvider'])
        nms_thresh = kwargs.get('nms_thresh', None)
        if nms_thresh is not None:
            self.nms_thresh = nms_thresh
        det_thresh = kwargs.get('det_thresh', None)
        if det_thresh is not None:
            self.det_thresh = det_thresh
        input_size = kwargs.get('input_size', None)
        if input_size is not None:
            if self.input_size is not None:
                print('warning: det_size is already set in scrfd model, ignore')
            else:
                self.input_size = input_size

    def forward(self, img, threshold):
        scores_list = []
        bboxes_list = []
        kpss_list = []
        input_size = tuple(img.shape[0:2][::-1])
        blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
        net_outs = self.session.run(self.output_names, {self.input_name : blob})

        input_height = blob.shape[2]
        input_width = blob.shape[3]
        fmc = self.fmc
        for idx, stride in enumerate(self._feat_stride_fpn):
            # If model support batch dim, take first output
            if self.batched:
                scores = net_outs[idx][0]
                bbox_preds = net_outs[idx + fmc][0]
                bbox_preds = bbox_preds * stride
                if self.use_kps:
                    kps_preds = net_outs[idx + fmc * 2][0] * stride
            # If model doesn't support batching take output as is
            else:
                scores = net_outs[idx]
                bbox_preds = net_outs[idx + fmc]
                bbox_preds = bbox_preds * stride
                if self.use_kps:
                    kps_preds = net_outs[idx + fmc * 2] * stride

            height = input_height // stride
            width = input_width // stride
            K = height * width
            key = (height, width, stride)
            if key in self.center_cache:
                anchor_centers = self.center_cache[key]
            else:
                #solution-1, c style:
                #anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
                #for i in range(height):
                #    anchor_centers[i, :, 1] = i
                #for i in range(width):
                #    anchor_centers[:, i, 0] = i

                #solution-2:
                #ax = np.arange(width, dtype=np.float32)
                #ay = np.arange(height, dtype=np.float32)
                #xv, yv = np.meshgrid(np.arange(width), np.arange(height))
                #anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)

                #solution-3:
                anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
                #print(anchor_centers.shape)

                anchor_centers = (anchor_centers * stride).reshape( (-1, 2) )
                if self._num_anchors>1:
                    anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) )
                if len(self.center_cache)<100:
                    self.center_cache[key] = anchor_centers

            pos_inds = np.where(scores>=threshold)[0]
            bboxes = distance2bbox(anchor_centers, bbox_preds)
            pos_scores = scores[pos_inds]
            pos_bboxes = bboxes[pos_inds]
            scores_list.append(pos_scores)
            bboxes_list.append(pos_bboxes)
            if self.use_kps:
                kpss = distance2kps(anchor_centers, kps_preds)
                #kpss = kps_preds
                kpss = kpss.reshape( (kpss.shape[0], -1, 2) )
                pos_kpss = kpss[pos_inds]
                kpss_list.append(pos_kpss)
        return scores_list, bboxes_list, kpss_list

    def detect(self, img, input_size = None, thresh=None, max_num=0, metric='default'):
        assert input_size is not None or self.input_size is not None
        input_size = self.input_size if input_size is None else input_size
            
        im_ratio = float(img.shape[0]) / img.shape[1]
        model_ratio = float(input_size[1]) / input_size[0]
        if im_ratio>model_ratio:
            new_height = input_size[1]
            new_width = int(new_height / im_ratio)
        else:
            new_width = input_size[0]
            new_height = int(new_width * im_ratio)
        det_scale = float(new_height) / img.shape[0]
        resized_img = cv2.resize(img, (new_width, new_height))
        det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 )
        det_img[:new_height, :new_width, :] = resized_img
        det_thresh = thresh if thresh is not None else self.det_thresh

        scores_list, bboxes_list, kpss_list = self.forward(det_img, det_thresh)

        scores = np.vstack(scores_list)
        scores_ravel = scores.ravel()
        order = scores_ravel.argsort()[::-1]
        bboxes = np.vstack(bboxes_list) / det_scale
        if self.use_kps:
            kpss = np.vstack(kpss_list) / det_scale
        pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
        pre_det = pre_det[order, :]
        keep = self.nms(pre_det)
        det = pre_det[keep, :]
        if self.use_kps:
            kpss = kpss[order,:,:]
            kpss = kpss[keep,:,:]
        else:
            kpss = None
        if max_num > 0 and det.shape[0] > max_num:
            area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                    det[:, 1])
            img_center = img.shape[0] // 2, img.shape[1] // 2
            offsets = np.vstack([
                (det[:, 0] + det[:, 2]) / 2 - img_center[1],
                (det[:, 1] + det[:, 3]) / 2 - img_center[0]
            ])
            offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
            if metric=='max':
                values = area
            else:
                values = area - offset_dist_squared * 2.0  # some extra weight on the centering
            bindex = np.argsort(
                values)[::-1]  # some extra weight on the centering
            bindex = bindex[0:max_num]
            det = det[bindex, :]
            if kpss is not None:
                kpss = kpss[bindex, :]
        return det, kpss

    def autodetect(self, img, max_num=0, metric='max'):
        bboxes, kpss = self.detect(img, input_size=(640, 640), thresh=0.5)
        bboxes2, kpss2 = self.detect(img, input_size=(128, 128), thresh=0.5)
        bboxes_all = np.concatenate([bboxes, bboxes2], axis=0)
        kpss_all = np.concatenate([kpss, kpss2], axis=0)
        keep = self.nms(bboxes_all)
        det = bboxes_all[keep,:]
        kpss = kpss_all[keep,:]
        if max_num > 0 and det.shape[0] > max_num:
            area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                    det[:, 1])
            img_center = img.shape[0] // 2, img.shape[1] // 2
            offsets = np.vstack([
                (det[:, 0] + det[:, 2]) / 2 - img_center[1],
                (det[:, 1] + det[:, 3]) / 2 - img_center[0]
            ])
            offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
            if metric=='max':
                values = area
            else:
                values = area - offset_dist_squared * 2.0  # some extra weight on the centering
            bindex = np.argsort(
                values)[::-1]  # some extra weight on the centering
            bindex = bindex[0:max_num]
            det = det[bindex, :]
            if kpss is not None:
                kpss = kpss[bindex, :]
        return det, kpss

    def nms(self, dets):
        thresh = self.nms_thresh
        x1 = dets[:, 0]
        y1 = dets[:, 1]
        x2 = dets[:, 2]
        y2 = dets[:, 3]
        scores = dets[:, 4]

        areas = (x2 - x1 + 1) * (y2 - y1 + 1)
        order = scores.argsort()[::-1]

        keep = []
        while order.size > 0:
            i = order[0]
            keep.append(i)
            xx1 = np.maximum(x1[i], x1[order[1:]])
            yy1 = np.maximum(y1[i], y1[order[1:]])
            xx2 = np.minimum(x2[i], x2[order[1:]])
            yy2 = np.minimum(y2[i], y2[order[1:]])

            w = np.maximum(0.0, xx2 - xx1 + 1)
            h = np.maximum(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (areas[i] + areas[order[1:]] - inter)

            inds = np.where(ovr <= thresh)[0]
            order = order[inds + 1]

        return keep