from __future__ import division import datetime import numpy as np #import onnx import onnxruntime import os import os.path as osp import cv2 import sys def softmax(z): assert len(z.shape) == 2 s = np.max(z, axis=1) s = s[:, np.newaxis] # necessary step to do broadcasting e_x = np.exp(z - s) div = np.sum(e_x, axis=1) div = div[:, np.newaxis] # dito return e_x / div def distance2bbox(points, distance, max_shape=None): """Decode distance prediction to bounding box. Args: points (Tensor): Shape (n, 2), [x, y]. distance (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). max_shape (tuple): Shape of the image. Returns: Tensor: Decoded bboxes. """ x1 = points[:, 0] - distance[:, 0] y1 = points[:, 1] - distance[:, 1] x2 = points[:, 0] + distance[:, 2] y2 = points[:, 1] + distance[:, 3] if max_shape is not None: x1 = x1.clamp(min=0, max=max_shape[1]) y1 = y1.clamp(min=0, max=max_shape[0]) x2 = x2.clamp(min=0, max=max_shape[1]) y2 = y2.clamp(min=0, max=max_shape[0]) return np.stack([x1, y1, x2, y2], axis=-1) def distance2kps(points, distance, max_shape=None): """Decode distance prediction to bounding box. Args: points (Tensor): Shape (n, 2), [x, y]. distance (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). max_shape (tuple): Shape of the image. Returns: Tensor: Decoded bboxes. """ preds = [] for i in range(0, distance.shape[1], 2): px = points[:, i%2] + distance[:, i] py = points[:, i%2+1] + distance[:, i+1] if max_shape is not None: px = px.clamp(min=0, max=max_shape[1]) py = py.clamp(min=0, max=max_shape[0]) preds.append(px) preds.append(py) return np.stack(preds, axis=-1) class SCRFD: def __init__(self, model_file=None, session=None): import onnxruntime self.model_file = model_file self.session = session self.taskname = 'detection' self.batched = False if self.session is None: assert self.model_file is not None assert osp.exists(self.model_file) self.session = onnxruntime.InferenceSession(self.model_file, providers=['CoreMLExecutionProvider','CUDAExecutionProvider']) self.center_cache = {} self.nms_thresh = 0.4 self.det_thresh = 0.5 self._init_vars() def _init_vars(self): input_cfg = self.session.get_inputs()[0] input_shape = input_cfg.shape #print(input_shape) if isinstance(input_shape[2], str): self.input_size = None else: self.input_size = tuple(input_shape[2:4][::-1]) #print('image_size:', self.image_size) input_name = input_cfg.name self.input_shape = input_shape outputs = self.session.get_outputs() if len(outputs[0].shape) == 3: self.batched = True output_names = [] for o in outputs: output_names.append(o.name) self.input_name = input_name self.output_names = output_names self.input_mean = 127.5 self.input_std = 128.0 #print(self.output_names) #assert len(outputs)==10 or len(outputs)==15 self.use_kps = False self._anchor_ratio = 1.0 self._num_anchors = 1 if len(outputs)==6: self.fmc = 3 self._feat_stride_fpn = [8, 16, 32] self._num_anchors = 2 elif len(outputs)==9: self.fmc = 3 self._feat_stride_fpn = [8, 16, 32] self._num_anchors = 2 self.use_kps = True elif len(outputs)==10: self.fmc = 5 self._feat_stride_fpn = [8, 16, 32, 64, 128] self._num_anchors = 1 elif len(outputs)==15: self.fmc = 5 self._feat_stride_fpn = [8, 16, 32, 64, 128] self._num_anchors = 1 self.use_kps = True def prepare(self, ctx_id, **kwargs): if ctx_id<0: self.session.set_providers(['CPUExecutionProvider']) nms_thresh = kwargs.get('nms_thresh', None) if nms_thresh is not None: self.nms_thresh = nms_thresh det_thresh = kwargs.get('det_thresh', None) if det_thresh is not None: self.det_thresh = det_thresh input_size = kwargs.get('input_size', None) if input_size is not None: if self.input_size is not None: print('warning: det_size is already set in scrfd model, ignore') else: self.input_size = input_size def forward(self, img, threshold): scores_list = [] bboxes_list = [] kpss_list = [] input_size = tuple(img.shape[0:2][::-1]) blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) net_outs = self.session.run(self.output_names, {self.input_name : blob}) input_height = blob.shape[2] input_width = blob.shape[3] fmc = self.fmc for idx, stride in enumerate(self._feat_stride_fpn): # If model support batch dim, take first output if self.batched: scores = net_outs[idx][0] bbox_preds = net_outs[idx + fmc][0] bbox_preds = bbox_preds * stride if self.use_kps: kps_preds = net_outs[idx + fmc * 2][0] * stride # If model doesn't support batching take output as is else: scores = net_outs[idx] bbox_preds = net_outs[idx + fmc] bbox_preds = bbox_preds * stride if self.use_kps: kps_preds = net_outs[idx + fmc * 2] * stride height = input_height // stride width = input_width // stride K = height * width key = (height, width, stride) if key in self.center_cache: anchor_centers = self.center_cache[key] else: #solution-1, c style: #anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 ) #for i in range(height): # anchor_centers[i, :, 1] = i #for i in range(width): # anchor_centers[:, i, 0] = i #solution-2: #ax = np.arange(width, dtype=np.float32) #ay = np.arange(height, dtype=np.float32) #xv, yv = np.meshgrid(np.arange(width), np.arange(height)) #anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32) #solution-3: anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) #print(anchor_centers.shape) anchor_centers = (anchor_centers * stride).reshape( (-1, 2) ) if self._num_anchors>1: anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) ) if len(self.center_cache)<100: self.center_cache[key] = anchor_centers pos_inds = np.where(scores>=threshold)[0] bboxes = distance2bbox(anchor_centers, bbox_preds) pos_scores = scores[pos_inds] pos_bboxes = bboxes[pos_inds] scores_list.append(pos_scores) bboxes_list.append(pos_bboxes) if self.use_kps: kpss = distance2kps(anchor_centers, kps_preds) #kpss = kps_preds kpss = kpss.reshape( (kpss.shape[0], -1, 2) ) pos_kpss = kpss[pos_inds] kpss_list.append(pos_kpss) return scores_list, bboxes_list, kpss_list def detect(self, img, input_size = None, thresh=None, max_num=0, metric='default'): assert input_size is not None or self.input_size is not None input_size = self.input_size if input_size is None else input_size im_ratio = float(img.shape[0]) / img.shape[1] model_ratio = float(input_size[1]) / input_size[0] if im_ratio>model_ratio: new_height = input_size[1] new_width = int(new_height / im_ratio) else: new_width = input_size[0] new_height = int(new_width * im_ratio) det_scale = float(new_height) / img.shape[0] resized_img = cv2.resize(img, (new_width, new_height)) det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 ) det_img[:new_height, :new_width, :] = resized_img det_thresh = thresh if thresh is not None else self.det_thresh scores_list, bboxes_list, kpss_list = self.forward(det_img, det_thresh) scores = np.vstack(scores_list) scores_ravel = scores.ravel() order = scores_ravel.argsort()[::-1] bboxes = np.vstack(bboxes_list) / det_scale if self.use_kps: kpss = np.vstack(kpss_list) / det_scale pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False) pre_det = pre_det[order, :] keep = self.nms(pre_det) det = pre_det[keep, :] if self.use_kps: kpss = kpss[order,:,:] kpss = kpss[keep,:,:] else: kpss = None if max_num > 0 and det.shape[0] > max_num: area = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img.shape[0] // 2, img.shape[1] // 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) if metric=='max': values = area else: values = area - offset_dist_squared * 2.0 # some extra weight on the centering bindex = np.argsort( values)[::-1] # some extra weight on the centering bindex = bindex[0:max_num] det = det[bindex, :] if kpss is not None: kpss = kpss[bindex, :] return det, kpss def autodetect(self, img, max_num=0, metric='max'): bboxes, kpss = self.detect(img, input_size=(640, 640), thresh=0.5) bboxes2, kpss2 = self.detect(img, input_size=(128, 128), thresh=0.5) bboxes_all = np.concatenate([bboxes, bboxes2], axis=0) kpss_all = np.concatenate([kpss, kpss2], axis=0) keep = self.nms(bboxes_all) det = bboxes_all[keep,:] kpss = kpss_all[keep,:] if max_num > 0 and det.shape[0] > max_num: area = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img.shape[0] // 2, img.shape[1] // 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) if metric=='max': values = area else: values = area - offset_dist_squared * 2.0 # some extra weight on the centering bindex = np.argsort( values)[::-1] # some extra weight on the centering bindex = bindex[0:max_num] det = det[bindex, :] if kpss is not None: kpss = kpss[bindex, :] return det, kpss def nms(self, dets): thresh = self.nms_thresh x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep