Video-P2P-Demo / app.py
ShaoTengLiu
debug
69d3d9d
raw
history blame
3.65 kB
#!/usr/bin/env python
from __future__ import annotations
import os
from subprocess import getoutput
import gradio as gr
import torch
from app_inference import create_inference_demo
from app_training import create_training_demo
from app_upload import create_upload_demo
from inference import InferencePipeline
from trainer import Trainer
TITLE = '# [Video-P2P](https://video-p2p.github.io/) UI'
ORIGINAL_SPACE_ID = 'video-p2p-library/Video-P2P-Demo'
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
GPU_DATA = getoutput('nvidia-smi')
SHARED_UI_WARNING = f'''## Attention - Training doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
else:
SETTINGS = 'Settings'
INVALID_GPU_WARNING = f'''## Attention - the specified GPU is invalid. Training may not work. Make sure you have selected a `T4 GPU` for this task.'''
CUDA_NOT_AVAILABLE_WARNING = f'''## Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
You can use "T4 small/medium" to run this demo.
</center>
'''
HF_TOKEN_NOT_SPECIFIED_WARNING = f'''The environment variable `HF_TOKEN` is not specified. Feel free to specify your Hugging Face token with write permission if you don't want to manually provide it for every run.
<center>
You can check and create your Hugging Face tokens <a href="https://huggingface.co/settings/tokens" target="_blank">here</a>.
You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab.
</center>
'''
HF_TOKEN = os.getenv('HF_TOKEN')
def show_warning(warning_text: str) -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Box():
gr.Markdown(warning_text)
return demo
pipe = InferencePipeline(HF_TOKEN)
trainer = Trainer(HF_TOKEN)
with gr.Blocks(css='style.css') as demo:
# if SPACE_ID == ORIGINAL_SPACE_ID:
# show_warning(SHARED_UI_WARNING)
# elif not torch.cuda.is_available():
# show_warning(CUDA_NOT_AVAILABLE_WARNING)
# elif (not 'T4' in GPU_DATA):
# show_warning(INVALID_GPU_WARNING)
gr.Markdown(TITLE)
with gr.Tabs():
with gr.TabItem('Train'):
create_training_demo(trainer, pipe)
# with gr.TabItem('Run'):
# create_inference_demo(pipe, HF_TOKEN)
# with gr.TabItem('Upload'):
# gr.Markdown('''
# - You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
# ''')
# create_upload_demo(HF_TOKEN)
if not HF_TOKEN:
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING)
demo.queue(max_size=1).launch(share=False)