import argparse import datetime import logging import inspect import math import os from typing import Optional, Union, Tuple, List, Callable, Dict from omegaconf import OmegaConf import torch import torch.nn.functional as F import torch.utils.checkpoint import diffusers import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version from diffusers.utils.import_utils import is_xformers_available from tqdm.auto import tqdm from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer from tuneavideo.models.unet import UNet3DConditionModel from tuneavideo.data.dataset import TuneAVideoDataset from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline from tuneavideo.util import save_videos_grid, ddim_inversion from einops import rearrange import cv2 import abc import ptp_utils import seq_aligner import shutil from torch.optim.adam import Adam from PIL import Image import numpy as np import decord decord.bridge.set_bridge('torch') # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.10.0.dev0") logger = get_logger(__name__, log_level="INFO") def main( pretrained_model_path: str, output_dir: str, train_data: Dict, validation_data: Dict, validation_steps: int = 100, trainable_modules: Tuple[str] = ( "attn1.to_q", "attn2.to_q", "attn_temp", ), train_batch_size: int = 1, max_train_steps: int = 500, learning_rate: float = 3e-5, scale_lr: bool = False, lr_scheduler: str = "constant", lr_warmup_steps: int = 0, adam_beta1: float = 0.9, adam_beta2: float = 0.999, adam_weight_decay: float = 1e-2, adam_epsilon: float = 1e-08, max_grad_norm: float = 1.0, gradient_accumulation_steps: int = 1, gradient_checkpointing: bool = True, checkpointing_steps: int = 500, resume_from_checkpoint: Optional[str] = None, mixed_precision: Optional[str] = "fp16", use_8bit_adam: bool = False, enable_xformers_memory_efficient_attention: bool = True, seed: Optional[int] = None, # pretrained_model_path: str, # image_path: str = None, # prompt: str = None, prompts: Tuple[str] = None, eq_params: Dict = None, save_name: str = None, is_word_swap: bool = None, blend_word: Tuple[str] = None, cross_replace_steps: float = 0.2, self_replace_steps: float = 0.5, video_len: int = 8, fast: bool = False, mixed_precision_p2p: str = 'fp32', ): *_, config = inspect.getargvalues(inspect.currentframe()) accelerator = Accelerator( gradient_accumulation_steps=gradient_accumulation_steps, mixed_precision=mixed_precision, ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if seed is not None: set_seed(seed) # Handle the output folder creation if accelerator.is_main_process: # now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") # output_dir = os.path.join(output_dir, now) os.makedirs(output_dir, exist_ok=True) os.makedirs(f"{output_dir}/samples", exist_ok=True) os.makedirs(f"{output_dir}/inv_latents", exist_ok=True) OmegaConf.save(config, os.path.join(output_dir, 'config.yaml')) # Load scheduler, tokenizer and models. noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet") # Freeze vae and text_encoder vae.requires_grad_(False) text_encoder.requires_grad_(False) unet.requires_grad_(False) for name, module in unet.named_modules(): if name.endswith(tuple(trainable_modules)): for params in module.parameters(): params.requires_grad = True if enable_xformers_memory_efficient_attention: if is_xformers_available(): unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if gradient_checkpointing: unet.enable_gradient_checkpointing() if scale_lr: learning_rate = ( learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes ) # Initialize the optimizer if use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW optimizer = optimizer_cls( unet.parameters(), lr=learning_rate, betas=(adam_beta1, adam_beta2), weight_decay=adam_weight_decay, eps=adam_epsilon, ) # Get the training dataset train_dataset = TuneAVideoDataset(**train_data) # Preprocessing the dataset train_dataset.prompt_ids = tokenizer( train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ).input_ids[0] # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=train_batch_size ) # Get the validation pipeline validation_pipeline = TuneAVideoPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") ) validation_pipeline.enable_vae_slicing() ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler') ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps) # Scheduler lr_scheduler = get_scheduler( lr_scheduler, optimizer=optimizer, num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps, num_training_steps=max_train_steps * gradient_accumulation_steps, ) # Prepare everything with our `accelerator`. unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move text_encode and vae to gpu and cast to weight_dtype text_encoder.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps) # Afterwards we recalculate our number of training epochs num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("text2video-fine-tune") # Train! total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}") logger.info(f" Total optimization steps = {max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if resume_from_checkpoint: if resume_from_checkpoint != "latest": path = os.path.basename(resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(output_dir, path)) global_step = int(path.split("-")[1]) first_epoch = global_step // num_update_steps_per_epoch resume_step = global_step % num_update_steps_per_epoch # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, num_train_epochs): unet.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(unet): # Convert videos to latent space pixel_values = batch["pixel_values"].to(weight_dtype) video_length = pixel_values.shape[1] pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w") latents = vae.encode(pixel_values).latent_dist.sample() latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length) latents = latents * 0.18215 # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each video timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["prompt_ids"])[0] # Get the target for loss depending on the prediction type if noise_scheduler.prediction_type == "epsilon": target = noise elif noise_scheduler.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}") # Predict the noise residual and compute loss model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean() train_loss += avg_loss.item() / gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % checkpointing_steps == 0: if accelerator.is_main_process: save_path = os.path.join(output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") if global_step % validation_steps == 0: if accelerator.is_main_process: samples = [] generator = torch.Generator(device=latents.device) generator.manual_seed(seed) ddim_inv_latent = None if validation_data.use_inv_latent: inv_latents_path = os.path.join(output_dir, f"inv_latents/ddim_latent-{global_step}.pt") ddim_inv_latent = ddim_inversion( validation_pipeline, ddim_inv_scheduler, video_latent=latents, num_inv_steps=validation_data.num_inv_steps, prompt="")[-1].to(weight_dtype) torch.save(ddim_inv_latent, inv_latents_path) for idx, prompt in enumerate(validation_data.prompts): sample = validation_pipeline(prompt, generator=generator, latents=ddim_inv_latent, **validation_data).videos save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{prompt}.gif") samples.append(sample) samples = torch.concat(samples) save_path = f"{output_dir}/samples/sample-{global_step}.gif" save_videos_grid(samples, save_path) logger.info(f"Saved samples to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= max_train_steps: break # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: unet = accelerator.unwrap_model(unet) pipeline = TuneAVideoPipeline.from_pretrained( pretrained_model_path, text_encoder=text_encoder, vae=vae, unet=unet, ) pipeline.save_pretrained(output_dir) accelerator.end_training() torch.cuda.empty_cache() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml") parser.add_argument("--fast", action='store_true') args = parser.parse_args() main(**OmegaConf.load(args.config), fast=args.fast)