vilarin's picture
Update app.py
1fc0e10 verified
raw
history blame
6.17 kB
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import os
import re
from polyglot.detect import Detector
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "LLaMAX/LLaMAX3-8B-Alpaca"
RELATIVE_MODEL="LLaMAX/LLaMAX3-8B"
TITLE = "<h1><center>LLaMAX3-8B-Translation</center></h1>"
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.float16,
device_map="auto",
quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(MODEL)
def lang_detector(text):
min_chars = 5
if len(text) < min_chars:
return "Input text too short"
try:
detector = Detector(text).language
lang_info = str(detector)
code = re.search(r"name: (\w+)", lang_info).group(1)
return code
except Exception as e:
return f"ERROR:{str(e)}"
def Prompt_template(query, src_language, trg_language):
instruction = f'Translate the following sentences from {src_language} to {trg_language}.'
prompt = (
'Below is an instruction that describes a task, paired with an input that provides further context. '
'Write a response that appropriately completes the request.\n'
f'### Instruction:\n{instruction}\n'
f'### Input:\n{query}\n### Response:'
)
return prompt
# Unfinished
def chunk_text():
pass
@spaces.GPU()
def translate(
source_text: str,
source_lang: str,
target_lang: str,
max_length: int,
temperature: float,
top_p: float,
rp: float):
print(f'Text is - {source_text}')
prompt = Prompt_template(source_text, source_lang, target_lang)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
generate_kwargs = dict(
input_ids=input_ids,
max_length=max_length,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=rp,
)
outputs = model.generate(**generate_kwargs)
resp = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
yield resp[len(prompt):]
CSS = """
h1 {
text-align: center;
display: block;
height: 10vh;
align-content: center;
}
footer {
visibility: hidden;
}
"""
DESCRIPTION = """
LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities.
"""
LANG_LIST = ['Akrikaans', 'Amharic', 'Arabic', 'Armenian', 'Assamese', 'Asturian', 'Azerbaijani', \
'Belarusian', 'Bengali', 'Bosnian', 'Bulgarian', 'Burmese', \
'Catalan', 'Cebuano', 'Simplified Chinese', 'Traditional Chinese', 'Croatian', 'Czech', \
'Danish', 'Dutch', 'English', 'Estonian', 'Filipino', 'Finnish', 'French', 'Fulah', \
'Galician', 'Ganda', 'Georgian', 'German', 'Greek', 'Gujarati', \
'Hausa', 'Hebrew', 'Hindi', 'Hungarian', \
'Icelandic', 'Igbo', 'Indonesian', 'Irish', 'Italian', \
'Japanese', 'Javanese', \
'Kabuverdianu', 'Kamba', 'Kannada', 'Kazakh', 'Khmer', 'Korean', 'Kyrgyz', \
'Lao', 'Latvian', 'Lingala', 'Lithuanian', 'Luo', 'Luxembourgish', \
'Macedonian', 'Malay', 'Malayalam', 'Maltese', 'Maori', 'Marathi', 'Mongolian', \
'Nepali', 'Northern', 'Norwegian', 'Nyanja', \
'Occitan', 'Oriya', 'Oromo', \
'Pashto', 'Persian', 'Polish', 'Portuguese', 'Punjabi', \
'Romanian', 'Russian', \
'Serbian', 'Shona', 'Sindhi', 'Slovak', 'Slovenian', 'Somali', 'Sorani', 'Spanish', 'Swahili', 'Swedish', \
'Tajik', 'Tamil', 'Telugu', 'Thai', 'Turkish', \
'Ukrainian', 'Umbundu', 'Urdu', 'Uzbek', \
'Vietnamese', 'Welsh', 'Wolof', 'Xhosa', 'Yoruba', 'Zulu']
chatbot = gr.Chatbot(height=600)
with gr.Blocks(theme="soft", css=CSS) as demo:
gr.Markdown(TITLE)
with gr.Row():
with gr.Column(scale=1):
source_lang = gr.Textbox(
label="Source Lang(Auto-Detect)",
value="English",
)
target_lang = gr.Dropdown(
label="Target Lang",
value="Spanish",
choices=LANG_LIST,
)
max_length = gr.Slider(
label="Max Length",
minimum=512,
maximum=8192,
value=4096,
step=8,
)
temperature = gr.Slider(
label="Temperature",
minimum=0,
maximum=1,
value=0.3,
step=0.1,
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
)
rp = gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
)
gr.Markdown(DESCRIPTION)
with gr.Column(scale=4):
source_text = gr.Textbox(
label="Source Text",
value="How we live is so different from how we ought to live that he who studies "+\
"what ought to be done rather than what is done will learn the way to his downfall "+\
"rather than to his preservation.",
lines=10,
)
output_text = gr.Textbox(
label="Output Text",
lines=10,
)
with gr.Row():
submit = gr.Button(value="Submit")
clear = gr.ClearButton([source_text, output_text])
source_text.change(lang_detector, source_text, source_lang)
submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, max_length, temperature, top_p, rp], outputs=[output_text])
if __name__ == "__main__":
demo.launch()