Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from PIL import Image | |
import gradio as gr | |
import spaces | |
from transformers import LlamaForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
import os | |
from threading import Thread | |
from polyglot.detect import Detector | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
MODEL = "LLaMAX/LLaMAX3-8B-Alpaca" | |
RELATIVE_MODEL="LLaMAX/LLaMAX3-8B" | |
TITLE = "<h1><center>LLaMAX3-8B-Translation</center></h1>" | |
quantization_config = BitsAndBytesConfig(load_in_8bit=True) | |
model = LlamaForCausalLM.from_pretrained( | |
MODEL, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
quantization_config=quantization_config) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
def lang_detector(text): | |
min_chars = 5 | |
if len(text) < min_chars: | |
return "Input text too short" | |
try: | |
detector = Detector(text).language | |
lang_info = str(detector) | |
code = re.search(r"name: (\w+)", lang_info).group(1) | |
return code | |
except Exception as e: | |
return f"ERROR:{str(e)}" | |
def Prompt_template(query, src_language, trg_language): | |
instruction = f'Translate the following sentences from {src_language} to {trg_language}.' | |
prompt = ( | |
'Below is an instruction that describes a task, paired with an input that provides further context. ' | |
'Write a response that appropriately completes the request.\n' | |
f'### Instruction:\n{instruction}\n' | |
f'### Input:\n{query}\n### Response:' | |
) | |
return prompt | |
# Unfinished | |
def chunk_text(): | |
pass | |
def translate( | |
source_text: str, | |
source_lang: str, | |
target_lang: str, | |
max_chunk: int, | |
max_length: int, | |
temperature: float): | |
print(f'Text is - {source_text}') | |
prompt = Prompt_template(source_text, source_lang, target_lang) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
streamer = TextIteratorStreamer(tokenizer, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,}) | |
generate_kwargs = dict( | |
input_ids=inputs, | |
streamer=streamer, | |
max_length=max_length, | |
do_sample=True, | |
temperature=temperature, | |
) | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
CSS = """ | |
h1 { | |
text-align: center; | |
display: block; | |
height: 10vh; | |
align-content: center; | |
} | |
footer { | |
visibility: hidden; | |
} | |
""" | |
DESCRIPTION = """ | |
- LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities. | |
- Source Language auto detected, input your Target language and country. | |
""" | |
chatbot = gr.Chatbot(height=600) | |
with gr.Blocks(theme="soft", css=CSS) as demo: | |
gr.Markdown(TITLE) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
source_lang = gr.Textbox( | |
label="Source Lang(Auto-Detect)", | |
value="English", | |
) | |
target_lang = gr.Textbox( | |
label="Target Lang", | |
value="Spanish", | |
) | |
max_chunk = gr.Slider( | |
label="Max tokens Per Chunk", | |
minimum=512, | |
maximum=2046, | |
value=1000, | |
step=8, | |
) | |
max_length = gr.Slider( | |
label="Context Window", | |
minimum=512, | |
maximum=8192, | |
value=4096, | |
step=8, | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0, | |
maximum=1, | |
value=0.3, | |
step=0.1, | |
) | |
gr.Markdown(DESCRIPTION) | |
with gr.Column(scale=4): | |
source_text = gr.Textbox( | |
label="Source Text", | |
value="How we live is so different from how we ought to live that he who studies "+\ | |
"what ought to be done rather than what is done will learn the way to his downfall "+\ | |
"rather than to his preservation.", | |
lines=10, | |
) | |
output_text = gr.Textbox( | |
label="Output Text", | |
lines=10, | |
) | |
with gr.Row(): | |
submit = gr.Button(value="Submit") | |
clear = gr.ClearButton([source_text, output_text]) | |
source_text.change(lang_detector, source_text, source_lang) | |
submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, max_chunk, max_length, temperature], outputs=[output_text]) | |
if __name__ == "__main__": | |
demo.launch() | |