Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,75 @@
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
-
|
5 |
-
from transformers import
|
6 |
import os
|
7 |
from threading import Thread
|
8 |
-
|
9 |
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
bnb_4bit_use_double_quant=True,
|
45 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
46 |
)
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
model = AutoModelForCausalLM.from_pretrained(
|
53 |
-
MODELS,
|
54 |
-
quantization_config=quantization_config,
|
55 |
-
attn_implementation=attn_implementation,
|
56 |
-
torch_dtype=torch.bfloat16,
|
57 |
-
device_map="auto",
|
58 |
-
)
|
59 |
-
tokenizer = AutoTokenizer.from_pretrained(MODELS)
|
60 |
-
|
61 |
-
#@spaces.GPU()
|
62 |
-
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int):
|
63 |
-
print(f'message is - {message}')
|
64 |
-
print(f'history is - {history}')
|
65 |
-
conversation = []
|
66 |
-
for prompt, answer in history:
|
67 |
-
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
68 |
-
conversation.append({"role": "user", "content": message})
|
69 |
-
|
70 |
-
print(f"Conversation is -\n{conversation}")
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
streamer = TextIteratorStreamer(tokenizer, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|
75 |
|
76 |
generate_kwargs = dict(
|
77 |
input_ids=input_ids,
|
78 |
streamer=streamer,
|
79 |
-
|
80 |
do_sample=True,
|
81 |
temperature=temperature,
|
82 |
)
|
@@ -89,45 +82,71 @@ def stream_chat(message: str, history: list, temperature: float, max_new_tokens:
|
|
89 |
buffer += new_text
|
90 |
yield buffer
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
gr.
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
minimum=0,
|
108 |
maximum=1,
|
|
|
109 |
step=0.1,
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
cache_examples=False,
|
130 |
-
)
|
131 |
|
132 |
|
133 |
if __name__ == "__main__":
|
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
from transformers import LlamaForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
6 |
import os
|
7 |
from threading import Thread
|
8 |
+
from polyglot.detect import Detector
|
9 |
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
+
MODEL = "LLaMAX/LLaMAX3-8B-Alpaca"
|
12 |
+
|
13 |
+
TITLE = "<h1><center>LLaMAX3-8B-Translation</center></h1>"
|
14 |
+
|
15 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
16 |
+
|
17 |
+
model = LlamaForCausalLM.from_pretrained(
|
18 |
+
MODEL,
|
19 |
+
torch_dtype=torch.bfloat16,
|
20 |
+
device_map="auto",
|
21 |
+
quantization_config=quantization_config)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
23 |
+
|
24 |
+
|
25 |
+
def lang_detector(text):
|
26 |
+
min_chars = 5
|
27 |
+
if len(text) < min_chars:
|
28 |
+
return "Input text too short"
|
29 |
+
try:
|
30 |
+
detector = Detector(text).language
|
31 |
+
lang_info = str(detector)
|
32 |
+
code = re.search(r"name: (\w+)", lang_info).group(1)
|
33 |
+
return code
|
34 |
+
except Exception as e:
|
35 |
+
return f"ERROR:{str(e)}"
|
36 |
+
|
37 |
+
def Prompt_template(query, src_language, trg_language):
|
38 |
+
instruction = f'Translate the following sentences from {src_language} to {trg_language}.'
|
39 |
+
prompt = (
|
40 |
+
'Below is an instruction that describes a task, paired with an input that provides further context. '
|
41 |
+
'Write a response that appropriately completes the request.\n'
|
42 |
+
f'### Instruction:\n{instruction}\n'
|
43 |
+
f'### Input:\n{query}\n### Response:'
|
|
|
|
|
44 |
)
|
45 |
+
return prompt
|
46 |
|
47 |
+
# Unfinished
|
48 |
+
def chunk_text():
|
49 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
@spaces.GPU()
|
52 |
+
def translate(
|
53 |
+
source_text: str,
|
54 |
+
source_lang: str,
|
55 |
+
target_lang: str,
|
56 |
+
max_chunk: int,
|
57 |
+
max_length: int,
|
58 |
+
temperature: float):
|
59 |
+
|
60 |
+
print(f'Text is - {source_text}')
|
61 |
+
|
62 |
+
prompt = Prompt_template(source_text, source_lang, target_lang)
|
63 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
64 |
+
|
65 |
+
input_ids = inputs.to(model.device)
|
66 |
|
67 |
streamer = TextIteratorStreamer(tokenizer, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|
68 |
|
69 |
generate_kwargs = dict(
|
70 |
input_ids=input_ids,
|
71 |
streamer=streamer,
|
72 |
+
max_length=max_length,
|
73 |
do_sample=True,
|
74 |
temperature=temperature,
|
75 |
)
|
|
|
82 |
buffer += new_text
|
83 |
yield buffer
|
84 |
|
85 |
+
CSS = """
|
86 |
+
h1 {
|
87 |
+
text-align: center;
|
88 |
+
display: block;
|
89 |
+
height: 10vh;
|
90 |
+
align-content: center;
|
91 |
+
}
|
92 |
+
footer {
|
93 |
+
visibility: hidden;
|
94 |
+
}
|
95 |
+
"""
|
96 |
|
97 |
+
chatbot = gr.Chatbot(height=600)
|
98 |
+
|
99 |
+
with gr.Blocks(theme="soft", css=CSS) as demo:
|
100 |
+
gr.Markdown(TITLE)
|
101 |
+
with gr.Row():
|
102 |
+
with gr.Column(scale=1):
|
103 |
+
source_lang = gr.Textbox(
|
104 |
+
label="Source Lang(Auto-Detect)",
|
105 |
+
value="English",
|
106 |
+
)
|
107 |
+
target_lang = gr.Textbox(
|
108 |
+
label="Target Lang",
|
109 |
+
value="Spanish",
|
110 |
+
)
|
111 |
+
max_chunk = gr.Slider(
|
112 |
+
label="Max tokens Per Chunk",
|
113 |
+
minimum=512,
|
114 |
+
maximum=2046,
|
115 |
+
value=1000,
|
116 |
+
step=8,
|
117 |
+
)
|
118 |
+
max_length = gr.Slider(
|
119 |
+
label="Context Window",
|
120 |
+
minimum=512,
|
121 |
+
maximum=8192,
|
122 |
+
value=4096,
|
123 |
+
step=8,
|
124 |
+
)
|
125 |
+
temperature = gr.Slider(
|
126 |
+
label="Temperature",
|
127 |
minimum=0,
|
128 |
maximum=1,
|
129 |
+
value=0.3,
|
130 |
step=0.1,
|
131 |
+
)
|
132 |
+
with gr.Column(scale=4):
|
133 |
+
gr.Markdown(DESCRIPTION)
|
134 |
+
source_text = gr.Textbox(
|
135 |
+
label="Source Text",
|
136 |
+
value="How we live is so different from how we ought to live that he who studies "+\
|
137 |
+
"what ought to be done rather than what is done will learn the way to his downfall "+\
|
138 |
+
"rather than to his preservation.",
|
139 |
+
lines=10,
|
140 |
+
)
|
141 |
+
output_text = gr.Textbox(
|
142 |
+
label="Output Text",
|
143 |
+
lines=10,
|
144 |
+
)
|
145 |
+
with gr.Row():
|
146 |
+
submit = gr.Button(value="Submit")
|
147 |
+
clear = gr.ClearButton([source_text, output_text])
|
148 |
+
|
149 |
+
submit.click(fn=huanik, inputs=[source_lang, target_lang, source_text, max_chunk, max_length, temperature], outputs=[output_text])
|
|
|
|
|
150 |
|
151 |
|
152 |
if __name__ == "__main__":
|