Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fasthtml.common import *
|
2 |
+
from fasthtml.components import *
|
3 |
+
from fastai.vision.all import *
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
|
7 |
+
app, rt = fast_app()
|
8 |
+
learn = load_learner("model.pkl")
|
9 |
+
|
10 |
+
def classify_image(img):
|
11 |
+
char,idx,probs = learn.predict(img)
|
12 |
+
im = Image.open(img).to_thumb(256,256)
|
13 |
+
name = " ".join([s.capitalize() for s in (char).split("_")])
|
14 |
+
return name, idx, probs
|
15 |
+
|
16 |
+
@rt('/')
|
17 |
+
def index():
|
18 |
+
return Titled("Chair vs Lamp Classifier",
|
19 |
+
Div(
|
20 |
+
H2("Example Images"),
|
21 |
+
Div(
|
22 |
+
Img(src="chair1.jpg", hx_trigger="click", hx_get="/classify", hx_target="#result"),
|
23 |
+
Img(src="chair2.jpg", hx_trigger="click", hx_get="/classify", hx_target="#result"),
|
24 |
+
Img(src="lamp1.jpg", hx_trigger="click", hx_get="/classify", hx_target="#result"),
|
25 |
+
Img(src="lamp2.jpg", hx_trigger="click", hx_get="/classify", hx_target="#result"),
|
26 |
+
cls="flex flex-wrap justify-center gap-4"
|
27 |
+
),
|
28 |
+
H2("Upload an Image"),
|
29 |
+
Button("Upload Image", hx_post="/upload", hx_target="#result"),
|
30 |
+
Div(id="result")
|
31 |
+
)
|
32 |
+
)
|
33 |
+
|
34 |
+
@rt('/classify')
|
35 |
+
def classify(img_file: UploadFile):
|
36 |
+
img_bytes = img_file.files['image'].read()
|
37 |
+
img = Image.open(io.BytesIO(img_bytes))
|
38 |
+
|
39 |
+
name, idx, probs = classify_image(img)
|
40 |
+
return Div(Div(f"This is {name}."),
|
41 |
+
Div(f"Probability it's {name}: {probs[idx]:.4f}"))
|
42 |
+
|
43 |
+
@rt('/upload', methods=['POST'])
|
44 |
+
def upload(img_file: UploadFile):
|
45 |
+
img_bytes = img_file.files['image'].read()
|
46 |
+
img = Image.open(io.BytesIO(img_bytes))
|
47 |
+
|
48 |
+
name, idx, probs = classify_image(img)
|
49 |
+
return Div(Div(f"This is {name}."),
|
50 |
+
Div(f"Probability it's {name}: {probs[idx]:.4f}"))
|
51 |
+
|
52 |
+
serve()
|