Spaces:
Sleeping
Sleeping
vincentmin
commited on
Commit
·
42c6b22
1
Parent(s):
99471f1
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from datetime import datetime, timedelta
|
3 |
import arxiv
|
4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.vectorstores import Chroma
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.llms import HuggingFaceHub
|
@@ -12,6 +11,7 @@ from langchain.schema import Document
|
|
12 |
|
13 |
MAX_RESULTS = 100
|
14 |
FORMAT = '%Y%m%d%H%M%S'
|
|
|
15 |
embeddings = HuggingFaceEmbeddings()
|
16 |
|
17 |
document_prompt = PromptTemplate(
|
@@ -74,14 +74,12 @@ def get_data(category: str, lookback_days: float, user_query: str):
|
|
74 |
print("User query:", user_query)
|
75 |
|
76 |
min_date, max_date = get_date_range(lookback_days)
|
77 |
-
print(min_date, max_date)
|
78 |
docs = get_documents(category, min_date, max_date)
|
79 |
if len(docs) == 0:
|
80 |
return "Found no documents. Check if the category is correct or consider increasing the value for 'Articles from this many days in the past will be searched through.'."
|
81 |
db = Chroma.from_documents(docs, embeddings)
|
82 |
retriever = db.as_retriever()
|
83 |
relevant_docs = retriever.get_relevant_documents(user_query)
|
84 |
-
print(relevant_docs[0].metadata)
|
85 |
articles = ""
|
86 |
for doc in relevant_docs:
|
87 |
articles += f"**Title: {doc.metadata['title']}**\n\nAuthors: {doc.metadata['authors']}\n\nAbstract: {doc.page_content}\n\nID: {doc.metadata['id']}\n\n"
|
|
|
1 |
import gradio as gr
|
2 |
from datetime import datetime, timedelta
|
3 |
import arxiv
|
|
|
4 |
from langchain.vectorstores import Chroma
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.llms import HuggingFaceHub
|
|
|
11 |
|
12 |
MAX_RESULTS = 100
|
13 |
FORMAT = '%Y%m%d%H%M%S'
|
14 |
+
|
15 |
embeddings = HuggingFaceEmbeddings()
|
16 |
|
17 |
document_prompt = PromptTemplate(
|
|
|
74 |
print("User query:", user_query)
|
75 |
|
76 |
min_date, max_date = get_date_range(lookback_days)
|
|
|
77 |
docs = get_documents(category, min_date, max_date)
|
78 |
if len(docs) == 0:
|
79 |
return "Found no documents. Check if the category is correct or consider increasing the value for 'Articles from this many days in the past will be searched through.'."
|
80 |
db = Chroma.from_documents(docs, embeddings)
|
81 |
retriever = db.as_retriever()
|
82 |
relevant_docs = retriever.get_relevant_documents(user_query)
|
|
|
83 |
articles = ""
|
84 |
for doc in relevant_docs:
|
85 |
articles += f"**Title: {doc.metadata['title']}**\n\nAuthors: {doc.metadata['authors']}\n\nAbstract: {doc.page_content}\n\nID: {doc.metadata['id']}\n\n"
|