# main.py from fastapi import FastAPI, File, UploadFile, HTTPException, Form from fastapi.responses import JSONResponse from pydantic import BaseModel import librosa import numpy as np import tempfile import os import warnings import re import matplotlib.pyplot as plt warnings.filterwarnings("ignore", category=UserWarning, module='librosa') app = FastAPI() def extract_audio_features(audio_file_path): # Load the audio file and extract features y, sr = librosa.load(audio_file_path, sr=None) f0, voiced_flag, voiced_probs = librosa.pyin(y, fmin=75, fmax=600) f0 = f0[~np.isnan(f0)] energy = librosa.feature.rms(y=y)[0] mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13) onset_env = librosa.onset.onset_strength(y=y, sr=sr) tempo, _ = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr) speech_rate = tempo / 60 return f0, energy, speech_rate, mfccs, y, sr def analyze_voice_stress(audio_file_path): f0, energy, speech_rate, mfccs, y, sr = extract_audio_features(audio_file_path) mean_f0 = np.mean(f0) std_f0 = np.std(f0) mean_energy = np.mean(energy) std_energy = np.std(energy) gender = 'male' if mean_f0 < 165 else 'female' norm_mean_f0 = 110 if gender == 'male' else 220 norm_std_f0 = 20 norm_mean_energy = 0.02 norm_std_energy = 0.005 norm_speech_rate = 4.4 norm_std_speech_rate = 0.5 z_f0 = (mean_f0 - norm_mean_f0) / norm_std_f0 z_energy = (mean_energy - norm_mean_energy) / norm_std_energy z_speech_rate = (speech_rate - norm_speech_rate) / norm_std_speech_rate stress_score = (0.4 * z_f0) + (0.4 * z_speech_rate) + (0.2 * z_energy) stress_level = float(1 / (1 + np.exp(-stress_score)) * 100) categories = ["Very Low Stress", "Low Stress", "Moderate Stress", "High Stress", "Very High Stress"] category_idx = min(int(stress_level / 20), 4) stress_category = categories[category_idx] return {"stress_level": stress_level, "category": stress_category, "gender": gender} def analyze_text_stress(text: str): # Placeholder text stress analysis stress_keywords = ["anxious", "nervous", "stress", "panic", "tense"] stress_score = sum([1 for word in stress_keywords if word in text.lower()]) # Normalize the score for a basic assessment stress_level = min(stress_score * 20, 100) categories = ["Very Low Stress", "Low Stress", "Moderate Stress", "High Stress", "Very High Stress"] category_idx = min(int(stress_level / 20), 4) stress_category = categories[category_idx] return {"stress_level": stress_level, "category": stress_category} class StressResponse(BaseModel): stress_level: float category: str gender: str = None # Optional, only for audio analysis @app.post("/analyze-stress/", response_model=StressResponse) async def analyze_stress( file: UploadFile = File(None), file_path: str = Form(None), text: str = Form(None) ): if file is None and file_path is None and text is None: raise HTTPException(status_code=400, detail="Either a file, file path, or text input is required.") # Handle audio file analysis if file or file_path: if file: if not file.filename.endswith(".wav"): raise HTTPException(status_code=400, detail="Only .wav files are supported.") with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file: temp_file.write(await file.read()) temp_file_path = temp_file.name else: if not file_path.endswith(".wav"): raise HTTPException(status_code=400, detail="Only .wav files are supported.") if not os.path.exists(file_path): raise HTTPException(status_code=400, detail="File path does not exist.") temp_file_path = file_path try: result = analyze_voice_stress(temp_file_path) return JSONResponse(content=result) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) finally: if file: os.remove(temp_file_path) # Handle text analysis elif text: result = analyze_text_stress(text) return JSONResponse(content=result) if __name__ == "__main__": import uvicorn port = int(os.getenv("PORT", 8000)) # Use the PORT environment variable for Render compatibility uvicorn.run("main:app", host="0.0.0.0", port=port, reload=True)