Spaces:
Sleeping
Sleeping
File size: 9,647 Bytes
0ab2c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import numpy as np
from scipy import signal
import soundfile as sf
import matplotlib.pyplot as plt
import io
import time
from datetime import datetime
def generate_test_tone(frequency, duration=1.0, sample_rate=44100):
t = np.linspace(0, duration, int(sample_rate * duration))
tone = np.sin(2 * np.pi * frequency * t)
return tone * np.hanning(len(tone))
def hearing_test(frequency, volume, ear_selection):
sample_rate = 44100
tone = generate_test_tone(float(frequency), 1.0, sample_rate)
volume_adjusted = tone * (10 ** (volume / 20))
stereo_tone = np.zeros((2, len(tone)))
if ear_selection == "Left":
stereo_tone[0] = volume_adjusted
elif ear_selection == "Right":
stereo_tone[1] = volume_adjusted
else:
stereo_tone[0] = stereo_tone[1] = volume_adjusted
output_path = f"test_tone_{frequency}Hz.wav"
sf.write(output_path, stereo_tone.T, sample_rate)
return output_path
def create_audiogram(left_ear_results, right_ear_results):
frequencies = [250, 500, 1000, 2000, 4000, 8000]
plt.figure(figsize=(10, 8))
plt.fill_between([125, 8000], -10, 25, color='#e6f3ff', alpha=0.3, label='Normal Hearing')
plt.fill_between([125, 8000], 25, 40, color='#b3d9ff', alpha=0.3, label='Mild Loss')
plt.fill_between([125, 8000], 40, 55, color='#80bfff', alpha=0.3, label='Moderate Loss')
plt.fill_between([125, 8000], 55, 70, color='#4da6ff', alpha=0.3, label='Moderate-Severe Loss')
plt.plot(frequencies, left_ear_results, 'x-', color='blue', label='Left Ear')
plt.plot(frequencies, right_ear_results, 'o-', color='red', label='Right Ear')
plt.xscale('log')
plt.xlim(125, 8000)
plt.ylim(70, -10)
plt.grid(True)
plt.xlabel('Frequency (Hz)')
plt.ylabel('Hearing Level (dB)')
plt.title('Audiogram Results')
plt.legend()
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close()
return buf
def generate_audio(duration, selected_frequencies):
sample_rate = 44100
num_samples = int(float(duration) * sample_rate)
noise = np.random.normal(0, 1, num_samples)
if selected_frequencies:
frequencies = [int(f) for f in selected_frequencies]
for freq in frequencies:
depth = -40 if freq == 4000 else -30
width = freq / 10
nyquist = sample_rate / 2
freq_normalized = freq / nyquist
quality_factor = freq / width
b, a = signal.iirnotch(freq_normalized, quality_factor)
noise = signal.filtfilt(b, a, noise)
noise *= 10 ** (depth / 20)
noise = noise / np.max(np.abs(noise))
output_path = "notched_noise.wav"
sf.write(output_path, noise, sample_rate)
return output_path
class HRVMonitor:
def __init__(self):
self.recording = False
self.start_time = None
self.data = []
def start_recording(self):
self.recording = True
self.start_time = time.time()
self.data = []
return "Recording started..."
def stop_recording(self):
self.recording = False
return "Recording stopped."
def update_display(self):
if not self.recording:
return None
current_time = time.time() - self.start_time
base_rr = 1000 # Base RR interval (ms)
rr_intervals = base_rr + np.random.normal(0, 50, 10) # Add variability
# Calculate HRV metrics
rmssd = np.sqrt(np.mean(np.diff(rr_intervals) ** 2))
sdnn = np.std(rr_intervals)
lf_power = np.random.uniform(70, 85) # Simulated LF power
hf_power = np.random.uniform(15, 30) # Simulated HF power
lf_hf_ratio = lf_power / hf_power
hrv_score = min(100, max(1, 50 + (rmssd - 30) / 2))
metrics = {
'time': current_time,
'score': round(hrv_score),
'rr': round(np.mean(rr_intervals)),
'rmssd': round(rmssd),
'sdnn': round(sdnn),
'lf': round(lf_power),
'hf': round(hf_power),
'lf_hf': round(lf_hf_ratio, 1)
}
self.data.append(metrics)
return f"""
HRV Score: {metrics['score']}
RR: {metrics['rr']} ms
RMSSD: {metrics['rmssd']} ms
SDNN: {metrics['sdnn']} ms
LF: {metrics['lf']}%
HF: {metrics['hf']}%
LF/HF: {metrics['lf_hf']}
Recording time: {round(current_time)}s
"""
def refresh_hrv(hrv_monitor):
return hrv_monitor.update_display() if hrv_monitor.recording else "Click Start to begin monitoring..."
def create_interface():
hrv_monitor = HRVMonitor()
with gr.Blocks(title="Hearing Test & HRV Monitor") as app:
with gr.Tabs():
# Hearing Test Tab
with gr.Tab("Hearing Test"):
gr.Markdown("## Hearing Test")
with gr.Row():
with gr.Column():
frequency = gr.Dropdown(
choices=["250", "500", "1000", "2000", "4000", "8000"],
value="1000",
label="Test Frequency (Hz)"
)
volume = gr.Slider(
minimum=-60,
maximum=0,
value=-20,
step=5,
label="Volume (dB)"
)
ear_select = gr.Radio(
choices=["Both", "Left", "Right"],
value="Both",
label="Ear Selection"
)
test_btn = gr.Button("Play Test Tone")
with gr.Column():
audio_output = gr.Audio(label="Test Tone")
with gr.Row():
with gr.Column():
left_thresholds = [gr.Number(value=0, label=f"{freq}Hz Left") for freq in [250, 500, 1000, 2000, 4000, 8000]]
with gr.Column():
right_thresholds = [gr.Number(value=0, label=f"{freq}Hz Right") for freq in [250, 500, 1000, 2000, 4000, 8000]]
generate_audiogram_btn = gr.Button("Generate Audiogram")
audiogram_output = gr.Image(label="Audiogram")
# White Noise Tab
with gr.Tab("White Noise Generator"):
gr.Markdown("## Notched White Noise Generator")
with gr.Row():
with gr.Column():
duration = gr.Slider(
minimum=1,
maximum=30,
value=5,
step=1,
label="Duration (seconds)"
)
frequencies = gr.CheckboxGroup(
choices=["250", "500", "1000", "2000", "4000", "8000"],
label="Frequencies to Notch (Hz)",
value=["4000", "2000"]
)
generate_noise_btn = gr.Button("Generate Noise")
with gr.Column():
noise_output = gr.Audio(label="Generated Noise")
# HRV Monitor Tab
with gr.Tab("HRV Monitor"):
with gr.Row():
with gr.Column():
start_btn = gr.Button("Start Recording")
stop_btn = gr.Button("Stop Recording")
hrv_display = gr.Textbox(
label="HRV Metrics",
value="Click Start to begin monitoring...",
lines=10,
interactive=False
)
gr.Markdown("""
### Metrics Explanation:
- **HRV Score**: Overall heart rate variability (1-100)
- **RR**: Average time between heartbeats (ms)
- **RMSSD**: Root Mean Square of Successive Differences
- **SDNN**: Standard Deviation of NN intervals
- **LF/HF**: Balance between sympathetic and parasympathetic activity
""")
# Event handlers for hearing test
test_btn.click(
fn=hearing_test,
inputs=[frequency, volume, ear_select],
outputs=audio_output
)
generate_audiogram_btn.click(
fn=lambda *args: create_audiogram(args[:6], args[6:]).getvalue(),
inputs=left_thresholds + right_thresholds,
outputs=audiogram_output
)
# Event handler for noise generator
generate_noise_btn.click(
fn=generate_audio,
inputs=[duration, frequencies],
outputs=noise_output
)
# Event handlers for HRV monitor
start_btn.click(
fn=hrv_monitor.start_recording,
outputs=hrv_display
)
stop_btn.click(
fn=hrv_monitor.stop_recording,
outputs=hrv_display
)
# Auto-refresh HRV display
hrv_display.change(
fn=lambda: refresh_hrv(hrv_monitor),
inputs=None,
outputs=hrv_display,
every=1
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch(share=False) |