Vivien
commited on
Commit
·
5b1c1bd
1
Parent(s):
7a848b2
Improve the composition of queries
Browse files
app.py
CHANGED
@@ -23,7 +23,6 @@ def load():
|
|
23 |
embeddings[k] = embeddings[k] / np.linalg.norm(
|
24 |
embeddings[k], axis=1, keepdims=True
|
25 |
)
|
26 |
-
embeddings[k] = embeddings[k] - np.mean(embeddings[k], axis=0)
|
27 |
return model, processor, df, embeddings
|
28 |
|
29 |
|
@@ -46,39 +45,40 @@ def image_search(query, corpus, n_results=24):
|
|
46 |
else:
|
47 |
return np.concatenate((e1, e2), axis=0)
|
48 |
|
49 |
-
splitted_query = query.split("
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
61 |
-
if len(remainder) > 0:
|
62 |
positive_embeddings = concatenate_embeddings(
|
63 |
-
positive_embeddings,
|
64 |
)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
|
75 |
if len(splitted_query) > 1:
|
76 |
negative_queries = (" ".join(splitted_query[1:])).split(";")
|
77 |
negative_embeddings = compute_text_embeddings(negative_queries)
|
78 |
dot_product2 = embeddings[k] @ negative_embeddings.T
|
79 |
-
dot_product2 = dot_product2 - np.
|
80 |
-
dot_product2 = dot_product2 / np.
|
81 |
-
dot_product -= np.max(dot_product2, axis=1)
|
82 |
|
83 |
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
|
84 |
return [
|
|
|
23 |
embeddings[k] = embeddings[k] / np.linalg.norm(
|
24 |
embeddings[k], axis=1, keepdims=True
|
25 |
)
|
|
|
26 |
return model, processor, df, embeddings
|
27 |
|
28 |
|
|
|
45 |
else:
|
46 |
return np.concatenate((e1, e2), axis=0)
|
47 |
|
48 |
+
splitted_query = query.split("EXCLUDING ")
|
49 |
+
dot_product = 0
|
50 |
+
k = 0 if corpus == "Unsplash" else 1
|
51 |
+
if len(splitted_query[0]) > 0:
|
52 |
+
positive_queries = splitted_query[0].split(";")
|
53 |
+
for positive_query in positive_queries:
|
54 |
+
match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
|
55 |
+
if match:
|
56 |
+
corpus2, idx, remainder = match.groups()
|
57 |
+
idx, remainder = int(idx), remainder.strip()
|
58 |
+
k2 = 0 if corpus2 == "Unsplash" else 1
|
|
|
|
|
59 |
positive_embeddings = concatenate_embeddings(
|
60 |
+
positive_embeddings, embeddings[k2][idx : idx + 1, :]
|
61 |
)
|
62 |
+
if len(remainder) > 0:
|
63 |
+
positive_embeddings = concatenate_embeddings(
|
64 |
+
positive_embeddings, compute_text_embeddings([remainder])
|
65 |
+
)
|
66 |
+
else:
|
67 |
+
positive_embeddings = concatenate_embeddings(
|
68 |
+
positive_embeddings, compute_text_embeddings([positive_query])
|
69 |
+
)
|
70 |
+
dot_product = embeddings[k] @ positive_embeddings.T
|
71 |
+
dot_product = dot_product - np.median(dot_product, axis=0)
|
72 |
+
dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
|
73 |
+
dot_product = np.min(dot_product, axis=1)
|
74 |
|
75 |
if len(splitted_query) > 1:
|
76 |
negative_queries = (" ".join(splitted_query[1:])).split(";")
|
77 |
negative_embeddings = compute_text_embeddings(negative_queries)
|
78 |
dot_product2 = embeddings[k] @ negative_embeddings.T
|
79 |
+
dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
|
80 |
+
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
|
81 |
+
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)
|
82 |
|
83 |
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
|
84 |
return [
|