File size: 15,459 Bytes
395d300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import math
from typing import List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, is_norm
from mmcv.ops import batched_nms
from mmengine.model import (BaseModule, bias_init_with_prob, constant_init,
                            normal_init)
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.models.layers.transformer import inverse_sigmoid
from mmdet.models.utils import (filter_scores_and_topk, multi_apply,
                                select_single_mlvl, sigmoid_geometric_mean)
from mmdet.registry import MODELS
from mmdet.structures.bbox import (cat_boxes, distance2bbox, get_box_tensor,
                                   get_box_wh, scale_boxes)
from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean
from mmdet.models.dense_heads.rtmdet_head import RTMDetHead
from mmdet.models.dense_heads.rtmdet_ins_head import RTMDetInsHead, RTMDetInsSepBNHead, MaskFeatModule

from mmdet.utils import AvoidCUDAOOM



def sthgoeswrong(logits):
    return torch.any(torch.isnan(logits)) or torch.any(torch.isinf(logits))

from time import time

@MODELS.register_module(force=True)
class RTMDetInsHeadCustom(RTMDetInsHead):

    def loss_by_feat(self,
                     cls_scores: List[Tensor],
                     bbox_preds: List[Tensor],
                     kernel_preds: List[Tensor],
                     mask_feat: Tensor,
                     batch_gt_instances: InstanceList,
                     batch_img_metas: List[dict],
                     batch_gt_instances_ignore: OptInstanceList = None):
        """Compute losses of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Decoded box for each scale
                level with shape (N, num_anchors * 4, H, W) in
                [tl_x, tl_y, br_x, br_y] format.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        num_imgs = len(batch_img_metas)
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.prior_generator.num_levels

        device = cls_scores[0].device
        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, batch_img_metas, device=device)
        flatten_cls_scores = torch.cat([
            cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                  self.cls_out_channels)
            for cls_score in cls_scores
        ], 1)
        flatten_kernels = torch.cat([
            kernel_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                    self.num_gen_params)
            for kernel_pred in kernel_preds
        ], 1)
        decoded_bboxes = []
        for anchor, bbox_pred in zip(anchor_list[0], bbox_preds):
            anchor = anchor.reshape(-1, 4)
            bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
            bbox_pred = distance2bbox(anchor, bbox_pred)
            decoded_bboxes.append(bbox_pred)

        flatten_bboxes = torch.cat(decoded_bboxes, 1)
        for gt_instances in batch_gt_instances:
            gt_instances.masks = gt_instances.masks.to_tensor(
                dtype=torch.bool, device=device)

        cls_reg_targets = self.get_targets(
            flatten_cls_scores,
            flatten_bboxes,
            anchor_list,
            valid_flag_list,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore)
        (anchor_list, labels_list, label_weights_list, bbox_targets_list,
         assign_metrics_list, sampling_results_list) = cls_reg_targets

        losses_cls, losses_bbox,\
            cls_avg_factors, bbox_avg_factors = multi_apply(
                self.loss_by_feat_single,
                cls_scores,
                decoded_bboxes,
                labels_list,
                label_weights_list,
                bbox_targets_list,
                assign_metrics_list,
                self.prior_generator.strides)

        cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item()
        losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls))

        bbox_avg_factor = reduce_mean(
            sum(bbox_avg_factors)).clamp_(min=1).item()
        losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox))

        loss_mask = self.loss_mask_by_feat(mask_feat, flatten_kernels,
                                           sampling_results_list,
                                           batch_gt_instances)
        loss = dict(
            loss_cls=losses_cls, loss_bbox=losses_bbox, loss_mask=loss_mask)

        return loss


    def _mask_predict_by_feat_single(self, mask_feat: Tensor, kernels: Tensor,
                                     priors: Tensor) -> Tensor:

        ori_maskfeat = mask_feat

        num_inst = priors.shape[0]
        h, w = mask_feat.size()[-2:]
        if num_inst < 1:
            return torch.empty(
                size=(num_inst, h, w),
                dtype=mask_feat.dtype,
                device=mask_feat.device)
        if len(mask_feat.shape) < 4:
            mask_feat.unsqueeze(0)

        coord = self.prior_generator.single_level_grid_priors(
            (h, w), level_idx=0, device=mask_feat.device).reshape(1, -1, 2)
        num_inst = priors.shape[0]
        points = priors[:, :2].reshape(-1, 1, 2)
        strides = priors[:, 2:].reshape(-1, 1, 2)
        relative_coord = (points - coord).permute(0, 2, 1) / (
            strides[..., 0].reshape(-1, 1, 1) * 8)
        relative_coord = relative_coord.reshape(num_inst, 2, h, w)

        mask_feat = torch.cat(
            [relative_coord,
             mask_feat.repeat(num_inst, 1, 1, 1)], dim=1)
        weights, biases = self.parse_dynamic_params(kernels)

        fp16_used = weights[0].dtype == torch.float16

        n_layers = len(weights)
        x = mask_feat.reshape(1, -1, h, w)
        for i, (weight, bias) in enumerate(zip(weights, biases)):
            with torch.cuda.amp.autocast(enabled=False):
                if fp16_used:
                    weight = weight.to(torch.float32)
                    bias = bias.to(torch.float32)
                x = F.conv2d(
                    x, weight, bias=bias, stride=1, padding=0, groups=num_inst)
                if i < n_layers - 1:
                    x = F.relu(x)

        if fp16_used:
            x = torch.clip(x, -8192, 8192)
        if sthgoeswrong(x):
            torch.save({'mask_feat': ori_maskfeat, 'kernels': kernels, 'priors': priors}, 'maskhead_nan_input.pt')
            raise Exception('Mask Head NaN')

        x = x.reshape(num_inst, h, w)
        return x

    def loss_mask_by_feat(self, mask_feats: Tensor, flatten_kernels: Tensor,
                          sampling_results_list: list,
                          batch_gt_instances: InstanceList) -> Tensor:
        batch_pos_mask_logits = []
        pos_gt_masks = []
        ignore_masks = []
        for idx, (mask_feat, kernels, sampling_results,
                  gt_instances) in enumerate(
                      zip(mask_feats, flatten_kernels, sampling_results_list,
                          batch_gt_instances)):
            pos_priors = sampling_results.pos_priors
            pos_inds = sampling_results.pos_inds
            pos_kernels = kernels[pos_inds]  # n_pos, num_gen_params
            pos_mask_logits = self._mask_predict_by_feat_single(
                mask_feat, pos_kernels, pos_priors)
            if gt_instances.masks.numel() == 0:
                gt_masks = torch.empty_like(gt_instances.masks)
                if gt_masks.shape[0] > 0:
                    ignore = torch.zeros(gt_masks.shape[0], dtype=torch.bool).to(device=gt_masks.device)
                    ignore_masks.append(ignore)
            else:
                gt_masks = gt_instances.masks[
                    sampling_results.pos_assigned_gt_inds, :]
                ignore_masks.append(gt_instances.ignore_mask[sampling_results.pos_assigned_gt_inds])
            batch_pos_mask_logits.append(pos_mask_logits)
            pos_gt_masks.append(gt_masks)

        pos_gt_masks = torch.cat(pos_gt_masks, 0)
        batch_pos_mask_logits = torch.cat(batch_pos_mask_logits, 0)
        ignore_masks = torch.logical_not(torch.cat(ignore_masks, 0))

        pos_gt_masks = pos_gt_masks[ignore_masks]
        batch_pos_mask_logits = batch_pos_mask_logits[ignore_masks]


        # avg_factor
        num_pos = batch_pos_mask_logits.shape[0]
        num_pos = reduce_mean(mask_feats.new_tensor([num_pos
                                                     ])).clamp_(min=1).item()

        if batch_pos_mask_logits.shape[0] == 0:
            return mask_feats.sum() * 0

        scale = self.prior_generator.strides[0][0] // self.mask_loss_stride
        # upsample pred masks
        batch_pos_mask_logits = F.interpolate(
            batch_pos_mask_logits.unsqueeze(0),
            scale_factor=scale,
            mode='bilinear',
            align_corners=False).squeeze(0)
        # downsample gt masks
        pos_gt_masks = pos_gt_masks[:, self.mask_loss_stride //
                                    2::self.mask_loss_stride,
                                    self.mask_loss_stride //
                                    2::self.mask_loss_stride]

        loss_mask = self.loss_mask(
            batch_pos_mask_logits,
            pos_gt_masks,
            weight=None,
            avg_factor=num_pos)

        return loss_mask


@MODELS.register_module()
class RTMDetInsSepBNHeadCustom(RTMDetInsSepBNHead):
    def _mask_predict_by_feat_single(self, mask_feat: Tensor, kernels: Tensor,
                                     priors: Tensor) -> Tensor:

        ori_maskfeat = mask_feat

        num_inst = priors.shape[0]
        h, w = mask_feat.size()[-2:]
        if num_inst < 1:
            return torch.empty(
                size=(num_inst, h, w),
                dtype=mask_feat.dtype,
                device=mask_feat.device)
        if len(mask_feat.shape) < 4:
            mask_feat.unsqueeze(0)

        coord = self.prior_generator.single_level_grid_priors(
            (h, w), level_idx=0, device=mask_feat.device).reshape(1, -1, 2)
        num_inst = priors.shape[0]
        points = priors[:, :2].reshape(-1, 1, 2)
        strides = priors[:, 2:].reshape(-1, 1, 2)
        relative_coord = (points - coord).permute(0, 2, 1) / (
            strides[..., 0].reshape(-1, 1, 1) * 8)
        relative_coord = relative_coord.reshape(num_inst, 2, h, w)

        mask_feat = torch.cat(
            [relative_coord,
             mask_feat.repeat(num_inst, 1, 1, 1)], dim=1)
        weights, biases = self.parse_dynamic_params(kernels)

        fp16_used = weights[0].dtype == torch.float16

        n_layers = len(weights)
        x = mask_feat.reshape(1, -1, h, w)
        for i, (weight, bias) in enumerate(zip(weights, biases)):
            with torch.cuda.amp.autocast(enabled=False):
                if fp16_used:
                    weight = weight.to(torch.float32)
                    bias = bias.to(torch.float32)
                x = F.conv2d(
                    x, weight, bias=bias, stride=1, padding=0, groups=num_inst)
                if i < n_layers - 1:
                    x = F.relu(x)

        if fp16_used:
            x = torch.clip(x, -8192, 8192)
        if sthgoeswrong(x):
            torch.save({'mask_feat': ori_maskfeat, 'kernels': kernels, 'priors': priors}, 'maskhead_nan_input.pt')
            raise Exception('Mask Head NaN')

        x = x.reshape(num_inst, h, w)
        return x

    @AvoidCUDAOOM.retry_if_cuda_oom
    def loss_mask_by_feat(self, mask_feats: Tensor, flatten_kernels: Tensor,
                          sampling_results_list: list,
                          batch_gt_instances: InstanceList) -> Tensor:
        batch_pos_mask_logits = []
        pos_gt_masks = []
        ignore_masks = []
        for idx, (mask_feat, kernels, sampling_results,
                  gt_instances) in enumerate(
                      zip(mask_feats, flatten_kernels, sampling_results_list,
                          batch_gt_instances)):
            pos_priors = sampling_results.pos_priors
            pos_inds = sampling_results.pos_inds
            pos_kernels = kernels[pos_inds]  # n_pos, num_gen_params
            pos_mask_logits = self._mask_predict_by_feat_single(
                mask_feat, pos_kernels, pos_priors)
            if gt_instances.masks.numel() == 0:
                gt_masks = torch.empty_like(gt_instances.masks)
                # if gt_masks.shape[0] > 0:
                    # ignore = torch.zeros(gt_masks.shape[0], dtype=torch.bool).to(device=gt_masks.device)
                    # ignore_masks.append(ignore)
            else:
                msk = torch.logical_not(gt_instances.ignore_mask[sampling_results.pos_assigned_gt_inds])
                gt_masks = gt_instances.masks[
                    sampling_results.pos_assigned_gt_inds, :][msk]
                pos_mask_logits = pos_mask_logits[msk]
                # ignore_masks.append(gt_instances.ignore_mask[sampling_results.pos_assigned_gt_inds])
            batch_pos_mask_logits.append(pos_mask_logits)
            pos_gt_masks.append(gt_masks)

        pos_gt_masks = torch.cat(pos_gt_masks, 0)
        batch_pos_mask_logits = torch.cat(batch_pos_mask_logits, 0)
        # ignore_masks = torch.logical_not(torch.cat(ignore_masks, 0))

        # pos_gt_masks = pos_gt_masks[ignore_masks]
        # batch_pos_mask_logits = batch_pos_mask_logits[ignore_masks]


        # avg_factor
        num_pos = batch_pos_mask_logits.shape[0]
        num_pos = reduce_mean(mask_feats.new_tensor([num_pos
                                                     ])).clamp_(min=1).item()

        if batch_pos_mask_logits.shape[0] == 0:
            return mask_feats.sum() * 0

        scale = self.prior_generator.strides[0][0] // self.mask_loss_stride
        # upsample pred masks
        batch_pos_mask_logits = F.interpolate(
            batch_pos_mask_logits.unsqueeze(0),
            scale_factor=scale,
            mode='bilinear',
            align_corners=False).squeeze(0)
        # downsample gt masks
        pos_gt_masks = pos_gt_masks[:, self.mask_loss_stride //
                                    2::self.mask_loss_stride,
                                    self.mask_loss_stride //
                                    2::self.mask_loss_stride]

        loss_mask = self.loss_mask(
            batch_pos_mask_logits,
            pos_gt_masks,
            weight=None,
            avg_factor=num_pos)

        return loss_mask