Spaces:
Sleeping
Sleeping
from dotenv import find_dotenv, load_dotenv # get the API keys | |
from transformers import pipeline # download huggingface model to our machine | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.chat_models import ChatOpenAI | |
from langchain.chains import LLMChain | |
import requests | |
import os | |
import streamlit as st | |
load_dotenv(find_dotenv()) | |
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
# img2text | |
def img2text(url): | |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") | |
text = image_to_text(url)[0]["generated_text"] | |
print(text) | |
return text | |
# llm | |
def generate_story(scenario): | |
# template to generate a story | |
template = """ | |
You are a story teller; | |
You can generate a short story based on a single narrative, the story should be no more than 20 words; | |
CONTEXT: {scenario} | |
STORY: | |
""" | |
prompt = PromptTemplate(template=template, input_variables=["scenario"]) | |
# llm chain | |
story_llm = LLMChain(llm=ChatOpenAI( | |
model_name="gpt-3.5-turbo", temperature=1), prompt=prompt, verbose=True) | |
story = story_llm.predict(scenario=scenario) | |
print(story) | |
return story | |
# text to speech | |
def text2speech(message): | |
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" | |
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"} | |
payloads = {"inputs": message} | |
response = requests.post(API_URL, headers=headers, json=payloads) | |
with open("audio.wav", 'wb') as file: # for me .wav worked instead of .flac | |
file.write(response.content) | |
# scenario = img2text("photo.jpg") | |
# story = generate_story(scenario) | |
# text2speech(story) | |
# main function for UI layer | |
def main(): | |
st.set_page_config(page_title="Image 2 Audio Story", page_icon="🩵") | |
st.header("Turn image into a short audio story") | |
uploaded_file = st.file_uploader("Choose an image...", type="jpg") | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded Image.", | |
use_container_width=True) | |
scenario = img2text(uploaded_file.name) | |
story = generate_story(scenario) | |
text2speech(story) | |
with st.expander("scenario"): | |
st.write(scenario) | |
with st.expander("story"): | |
st.write(story) | |
st.audio("audio.wav") | |
if __name__ == '__main__': | |
main() |