# import gradio as gr # def greet(name): # return "Hello " + name + "!!" # demo = gr.Interface(fn=greet, inputs="text", outputs="text") # demo.launch() __all__ = ['label_func', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf'] # Cell from fastai.vision.all import * import gradio as gr def label_func(x): return "dog" if x[0].islower() else "cat" # Cell learn = load_learner('model.pkl') # Cell categories = ('Cat', 'Dog') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # Cell # image = gr.inputs.Image(shape=(192, 192)) image = gr.Image(height=192, width=192) label = gr.Label() # label = gr.outputs.Label() examples = ['dog1.jpeg', 'dog2.jpeg', 'dog3.jpeg','cat.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)