import gradio as gr from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, EulerAncestralDiscreteScheduler import torch import numpy as np from controlnet_aux import HEDdetector from PIL import Image import os negative_prompt = "" device = 'cuda:0' controlnet = ControlNetModel.from_pretrained("vsanimator/sketch-a-sketch").to(device) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet#, torch_dtype=torch.float16 ).to(device) pipe.safety_checker = None pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) threshold = 250 hed = HEDdetector.from_pretrained('lllyasviel/Annotators') num_images = 3 with gr.Blocks() as demo: start_state = [] for k in range(num_images): start_state.append([None, None]) sketch_states = gr.State(start_state) checkbox_state = gr.State(False) with gr.Row(): with gr.Column(scale = 1): with gr.Tabs(shape=(768, 768),min_width=512): with gr.TabItem("Draw", shape=(512, 512),min_width=512): i = gr.Image(source="canvas", shape=(512, 512), tool="color-sketch", min_width=512, brush_radius = 2).style(width=600, height=600) with gr.TabItem("ShadowDraw", shape=(512, 512),min_width=512): i_sketch = gr.Image(shape=(512, 512),min_width=512).style(width=600, height=600) prompt_box = gr.Textbox(label="Prompt") with gr.Row(): btn = gr.Button("Render").style(width=100, height=80) checkbox = gr.Checkbox(label = "ShadowDraw", value=False) btn2 = gr.Button("Reset").style(width=100, height=80) i_prev = gr.Image(shape=(512, 512), min_width=512).style(width=768, height=768) with gr.Column(scale = 1): o_list = [gr.Image().style(width=512, height=512) for _ in range(num_images)] def sketch(curr_sketch, prev_sketch, prompt, negative_prompt, seed, num_steps): print("Sketching") if curr_sketch is None: return None, None if prev_sketch is None: prev_sketch = curr_sketch generator = torch.Generator(device=device) generator.manual_seed(seed) curr_sketch_image = Image.fromarray(curr_sketch.astype(np.uint8)).convert("L") # Run function call images = pipe(prompt, curr_sketch_image.convert("RGB").point( lambda p: 256 if p > 128 else 0), negative_prompt = negative_prompt, num_inference_steps=num_steps, generator=generator, controlnet_conditioning_scale = 1.0).images return images[0] def run_sketching(prompt, curr_sketch, prev_sketch, sketch_states, shadow_draw): to_return = [] for k in range(num_images): seed = sketch_states[k][1] if seed is None: seed = np.random.randint(1000) sketch_states[k][1] = seed new_image = sketch(curr_sketch, prev_sketch, prompt, negative_prompt, seed = seed, num_steps = 20) to_return.append(new_image) prev_sketch = curr_sketch if shadow_draw: hed_images = [] for image in to_return: hed_images.append(hed(image, scribble=False)) avg_hed = np.mean([np.array(image) for image in hed_images], axis = 0) curr_sketch = np.array(curr_sketch).astype(float) / 255. curr_sketch = Image.fromarray(np.uint8(1.0*((0.0*curr_sketch + 1. - 1.*(avg_hed / 255.))) * 255.)) else: curr_sketch = None return to_return + [curr_sketch, prev_sketch, sketch_states] def reset(sketch_states): for k in range(num_images): sketch_states[k] = [None, None] return None, None, sketch_states btn.click(run_sketching, [prompt_box, i, i_prev, sketch_states, checkbox_state], o_list + [i_sketch, i_prev, sketch_states]) btn2.click(reset, sketch_states, [i, i_prev, sketch_states]) checkbox.change(lambda i: i, inputs=[checkbox], outputs=[checkbox_state]) demo.launch()#share = True)