Spaces:
Sleeping
Sleeping
File size: 8,460 Bytes
1ddb890 ac0c0ce 0ff04fc ac0c0ce 99f4e90 cf67794 1ddb890 0ff04fc e69de16 87ca550 1ddb890 cf67794 e69de16 cf67794 b072ff1 e69de16 cf67794 ff4e567 2a231ba e69de16 2a231ba 4a925ac ac0c0ce 2a231ba 4a925ac ac0c0ce 4a925ac ac0c0ce ff4e567 e69de16 cf67794 87ca550 2a231ba ac0c0ce 5e53171 cf67794 ac0c0ce e69de16 ac0c0ce 87ca550 e69de16 ac0c0ce 2a231ba e69de16 cf67794 e69de16 cf67794 1ddb890 4a925ac e69de16 5c906d0 99f4e90 ac0c0ce 5c906d0 e69de16 ac0c0ce e69de16 164f998 e69de16 164f998 5c906d0 e69de16 4a925ac 5c906d0 e69de16 5c906d0 e69de16 5c906d0 e69de16 5c906d0 e69de16 1ddb890 85fcc07 164f998 e69de16 164f998 e69de16 164f998 e69de16 164f998 e69de16 85fcc07 0479c04 e69de16 164f998 0479c04 99f4e90 e69de16 cf67794 ac0c0ce e69de16 0479c04 eb814f3 e69de16 cf67794 99f4e90 b072ff1 eb814f3 e69de16 cf67794 1ddb890 7c43d6c ff064e2 7c43d6c ff064e2 e69de16 b072ff1 ff064e2 7c43d6c e69de16 7c43d6c 1ddb890 7c43d6c 1ddb890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import gradio as gr
import os
import subprocess
import spaces
from typing import Tuple, List, Dict
from pydub import AudioSegment
from rich.console import Console
from rich.panel import Panel
from rich.progress import Progress, SpinnerColumn, TextColumn, BarColumn, TimeRemainingColumn
from rich.text import Text
import time
console = Console()
@spaces.GPU
def inference(audio_file: str, model_name: str, vocals: bool, drums: bool, bass: bool, other: bool, mp3: bool, mp3_bitrate: int) -> Tuple[str, List[str], gr.HTML]:
log_messages = []
def stream_log(message, style=""):
formatted_message = f"[{model_name}] {message}"
log_messages.append(formatted_message)
return gr.HTML(f"<pre style='margin-bottom: 0;{style}'>{formatted_message}</pre>")
yield None, None, stream_log("Initializing Demucs...", "color: #4CAF50; font-weight: bold;")
time.sleep(1) # Simulate initialization time
yield None, None, stream_log("Loading audio file...", "color: #2196F3;")
time.sleep(0.5) # Simulate loading time
if audio_file is None:
yield None, None, stream_log("Error: No audio file provided", "color: #F44336;")
raise gr.Error("Please upload an audio file")
# Use absolute paths
base_output_dir = os.path.abspath("separated")
output_dir = os.path.join(base_output_dir, model_name, os.path.splitext(os.path.basename(audio_file))[0])
os.makedirs(output_dir, exist_ok=True)
# Construct the Demucs command with full paths
cmd = [
"python", "-m", "demucs",
"--out", base_output_dir,
"-n", model_name,
audio_file
]
yield None, None, stream_log("Preparing separation process...", "color: #FF9800;")
time.sleep(0.5) # Simulate preparation time
try:
# Run the Demucs command
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
# Simulate a loading animation
with Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
BarColumn(),
TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
TimeRemainingColumn(),
console=console
) as progress:
task = progress.add_task("[cyan]Separating stems...", total=100)
while process.poll() is None:
progress.update(task, advance=1)
time.sleep(0.1)
progress.update(task, completed=100)
if process.returncode != 0:
error_output = process.stderr.read()
yield None, None, stream_log(f"Error: Separation failed", "color: #F44336;")
raise gr.Error(f"Demucs separation failed. Check the logs for details.")
except Exception as e:
yield None, None, stream_log(f"Unexpected error: {str(e)}", "color: #F44336;")
raise gr.Error(f"An unexpected error occurred: {str(e)}")
yield None, None, stream_log("Separation completed successfully!", "color: #4CAF50; font-weight: bold;")
time.sleep(0.5) # Pause for effect
yield None, None, stream_log("Processing stems...", "color: #9C27B0;")
time.sleep(0.5) # Simulate processing time
# Change the stem search directory using full path
stem_search_dir = os.path.join(base_output_dir, model_name, os.path.splitext(os.path.basename(audio_file))[0])
yield None, None, stream_log(f"Searching for stems in: {stem_search_dir}")
stems: Dict[str, str] = {}
for stem in ["vocals", "drums", "bass", "other"]:
stem_path = os.path.join(stem_search_dir, f"{stem}.wav")
yield None, None, stream_log(f"Checking for {stem} stem at: {stem_path}")
if os.path.exists(stem_path):
stems[stem] = stem_path
yield None, None, stream_log(f"Found {stem} stem")
else:
yield None, None, stream_log(f"Warning: {stem} stem not found")
if not stems:
yield None, None, stream_log("Error: No stems found. Checking alternative directory...")
stem_search_dir = os.path.join(base_output_dir, model_name)
for stem in ["vocals", "drums", "bass", "other"]:
stem_path = os.path.join(stem_search_dir, f"{stem}.wav")
yield None, None, stream_log(f"Checking for {stem} stem at: {stem_path}")
if os.path.exists(stem_path):
stems[stem] = stem_path
yield None, None, stream_log(f"Found {stem} stem")
else:
yield None, None, stream_log(f"Warning: {stem} stem not found")
yield None, None, stream_log(f"All found stems: {list(stems.keys())}")
selected_stems: List[str] = []
for stem, selected in zip(["vocals", "drums", "bass", "other"], [vocals, drums, bass, other]):
if selected:
yield None, None, stream_log(f"{stem} is selected by user")
if stem in stems:
selected_stems.append(stems[stem])
yield None, None, stream_log(f"Selected {stem} stem for mixing")
else:
yield None, None, stream_log(f"Warning: {stem} was selected but not found")
yield None, None, stream_log(f"Final selected stems: {selected_stems}")
if not selected_stems:
yield None, None, stream_log("Error: No stems selected for mixing", "color: #F44336;")
raise gr.Error("Please select at least one stem to mix and ensure it was successfully separated.")
output_file: str = os.path.join(output_dir, "mixed.wav")
yield None, None, stream_log("Mixing selected stems...", "color: #FF5722;")
time.sleep(0.5) # Simulate mixing time
mixed_audio: AudioSegment = AudioSegment.empty()
for stem_path in selected_stems:
mixed_audio += AudioSegment.from_wav(stem_path)
mixed_audio.export(output_file, format="wav")
if mp3:
yield None, None, stream_log(f"Converting to MP3...", "color: #795548;")
time.sleep(0.5) # Simulate conversion time
mp3_output_file: str = os.path.splitext(output_file)[0] + ".mp3"
mixed_audio.export(mp3_output_file, format="mp3", bitrate=str(mp3_bitrate) + "k")
output_file = mp3_output_file
yield None, None, stream_log("Process completed successfully!", "color: #4CAF50; font-weight: bold;")
yield output_file, list(stems.values()), gr.HTML(
Panel.fit(
Text("Separation and mixing completed successfully!", style="bold green"),
title="Demucs Result",
border_style="green"
).render()
)
# Define the Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# Demucs Music Source Separation and Mixing")
gr.Markdown("Separate vocals, drums, bass, and other instruments from your music using Demucs and mix the selected stems.")
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
model_dropdown = gr.Dropdown(
["htdemucs", "htdemucs_ft", "htdemucs_6s", "hdemucs_mmi", "mdx", "mdx_extra", "mdx_q", "mdx_extra_q"],
label="Model Name",
value="htdemucs_ft"
)
with gr.Row():
vocals_checkbox = gr.Checkbox(label="Vocals", value=True)
drums_checkbox = gr.Checkbox(label="Drums", value=True)
with gr.Row():
bass_checkbox = gr.Checkbox(label="Bass", value=True)
other_checkbox = gr.Checkbox(label="Other", value=True)
mp3_checkbox = gr.Checkbox(label="Save as MP3", value=False)
mp3_bitrate = gr.Slider(128, 320, step=32, label="MP3 Bitrate", visible=False)
submit_btn = gr.Button("Process", variant="primary")
with gr.Column(scale=1):
output_audio = gr.Audio(type="filepath", label="Processed Audio (Mixed)")
stems_output = gr.File(label="Individual Stems", file_count="multiple")
separation_log = gr.HTML()
submit_btn.click(
fn=inference,
inputs=[audio_input, model_dropdown, vocals_checkbox, drums_checkbox, bass_checkbox, other_checkbox, mp3_checkbox, mp3_bitrate],
outputs=[output_audio, stems_output, separation_log]
)
mp3_checkbox.change(
fn=lambda mp3: gr.update(visible=mp3),
inputs=mp3_checkbox,
outputs=mp3_bitrate
)
# Launch the Gradio interface
iface.launch()
|