import gradio as gr from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch import uuid import io from PIL import Image from threading import Thread # Define model options (for the OCR model specifically) MODEL_OPTIONS = { "Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", } # Preload models and processors into CUDA models = {} processors = {} for name, model_id in MODEL_OPTIONS.items(): print(f"Loading {name}...") models[name] = Qwen2VLForConditionalGeneration.from_pretrained( model_id, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda").eval() processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) image_extensions = Image.registered_extensions() def identify_and_save_blob(blob_path): """Identifies if the blob is an image and saves it.""" try: with open(blob_path, 'rb') as file: blob_content = file.read() try: Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image extension = ".png" # Default to PNG for saving media_type = "image" except (IOError, SyntaxError): raise ValueError("Unsupported media type. Please upload a valid image.") filename = f"temp_{uuid.uuid4()}_media{extension}" with open(filename, "wb") as f: f.write(blob_content) return filename, media_type except FileNotFoundError: raise ValueError(f"The file {blob_path} was not found.") except Exception as e: raise ValueError(f"An error occurred while processing the file: {e}") def qwen_inference(model_name, media_input, text_input=None): """Handles inference for the selected model.""" model = models[model_name] processor = processors[model_name] if isinstance(media_input, str): media_path = media_input if media_path.endswith(tuple([i for i in image_extensions.keys()])): media_type = "image" else: try: media_path, media_type = identify_and_save_blob(media_input) except Exception as e: raise ValueError("Unsupported media type. Please upload a valid image.") messages = [ { "role": "user", "content": [ { "type": media_type, media_type: media_path }, {"type": "text", "text": text_input}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, _ = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, padding=True, return_tensors="pt", ).to("cuda") streamer = TextIteratorStreamer( processor.tokenizer, skip_prompt=True, skip_special_tokens=True ) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text # Remove <|im_end|> or similar tokens from the output buffer = buffer.replace("<|im_end|>", "") yield buffer def ocr_endpoint(image, question): """This function will be exposed to the /ocr endpoint for OCR processing.""" return qwen_inference("Latex OCR", image, question) # Gradio app setup for OCR endpoint with gr.Blocks() as demo: gr.Markdown("# Qwen2VL OCR Model - Latex OCR") with gr.Row(): with gr.Column(): input_media = gr.File(label="Upload Image", type="filepath") text_input = gr.Textbox(label="Question", placeholder="Ask a question about the image...") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text", lines=10) submit_btn.click( ocr_endpoint, [input_media, text_input], [output_text] ) # Launch the app on the /ocr endpoint demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=True)