w601sxs's picture
Update app.py
ecfed14
raw
history blame
999 Bytes
import gradio as gr
import torch
from peft import PeftModel, PeftConfig, LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
from trl import SFTTrainer
ref_model = AutoModelForCausalLM.from_pretrained("w601sxs/b1ade-1b", torch_dtype=torch.bfloat16)
peft_model_id = "w601sxs/b1ade-1b-orca-chkpt-506k"
config = PeftConfig.from_pretrained(peft_model_id)
model = PeftModel.from_pretrained(ref_model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model.eval()
def predict(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=128)
out_text = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0].split("answer:")[-1]
return out_text.split(text)[-1]
demo = gr.Interface(
fn=predict,
inputs='text',
outputs='text',
)
demo.launch()