Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,32 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
gr.Interface.load("models/w601sxs/pythia-70m-instruct-orca-chkpt-64000").launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from peft import PeftModel, PeftConfig
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
|
6 |
+
ref_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-70m-deduped-v0", torch_dtype=torch.bfloat16)
|
7 |
+
peft_model_id = "w601sxs/pythia-70m-instruct-orca-chkpt-64000"
|
8 |
+
|
9 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
10 |
+
model = PeftModel.from_pretrained(ref_model, peft_model_id)
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
12 |
+
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
def predict(text):
|
16 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10)
|
19 |
+
out_text = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])
|
20 |
+
|
21 |
+
return out_text
|
22 |
+
|
23 |
+
|
24 |
+
demo = gr.Interface(
|
25 |
+
fn=predict,
|
26 |
+
inputs='text',
|
27 |
+
outputs='text',
|
28 |
+
)
|
29 |
+
|
30 |
+
demo.launch()
|
31 |
+
|
32 |
|
|